学年

教科

質問の種類

物理 高校生

最後の問題でどうして張力が最もおおきくなるのがBってわかるんですか?

2 cos 8-1 これよりcos-1212 すなわち、0- 62 5 (1)/2gR[m/s] (2) 3mg [N] (3) mo(1+2R) (N) (4) r R (5) 6mg [N] (2)と(3)は、おもりの速さは等しく,円運動の半径が異なる。 (4)は最高で、おもりの速さが0より大きく、かつ糸の張力が0以 上であればよい。 (5)はA~B~C間の運動で最も張力が大きい瞬間を考 える。 解説 (1) 求める速さを [m/s] とする。 AB間で力学的エネルギー 保存の法則より。 糸 62 (1) 最下点Bを薫 による位置エネルギーの 準面と考える。 (5) mgR==mv2 これより、B=√2gR [m/s] (vg<0 は不適) F=m =2mg (2) 点Bを通過する直前のおもりにはたらく遠心力 F[N] は, DB2 (2)3) センサー12 センサー 14 R- R 遠心力を考えて,鉛直方向の力のつり合いより求める張力 の大きさを T[N] とすると, TB T-mg-F=0 Fを代入して, T= mg +2mg=3mg[N] (3) 点B を通過した直後のおもりにはたらく遠心力F' 〔N〕は, UB F'=m- -= 2mg r R r 求める張力の大きさを T' [N] とすると, (2) と同様に考えて T' -mg-F' =0 F' を代入して, T=mg+2mg/L=mg (1+2R) [N] mg/(1+ VB mg (4)点Cでのおもりの速さをvc[m/s] とする。 AC間で力学的 (4) Bを重力による位置エ エネルギー保存の法則より、 ネルギーの基準面と考える。 mgR=m mvc+mgx2r これより, vc = √2g (R-2r) (vc<0 は不適) vc>0より,2g(R-2r)>0 これより< ...... ① 2 点Cでおもりにはたらく遠心力 F”〔N〕は, F = m² = 2mg (-2) R r 遠心力を考えて,鉛直方向の力のつり合いより、点Cでの 糸の張力の大きさを T” 〔N〕 とすると, T" + mg-F" = 0 第Ⅰ部 様々な運動 F" T mg P D

未解決 回答数: 1
物理 高校生

(5)で電荷の移動する方向を求める問題なのですが、コンデンサーBの方が容量が大きい為BからAに移動すると思ったのですがなぜAからBに移動するのか教えて頂きたいです。お願いします🙇‍♀️

練習問題 157. 問いに答えよ. 図1のように極板面積 S, 間隔 4d の平行板コンデンサーA,Bがある. 真空の誘電率を eo として以下の (コンデンサー・導体の挿入・合成容量) (1) コンデンサーAの容量 CA を eo, S, d を用いて表せ. (2)導体板がない状態で,電圧 V の電池でコンデンサーA,Bを別々に充電し、十分時間が経った後,電 池を取り除いた. コンデンサーA に蓄えられた電荷 QAはいくらか. (3) コンデンサー B に極板と同形で厚さ2dの導体板を図1の位置に挿入した.このとき, コンデンサー Bの容量 CB を表す式を記せ. (4) コンデンサーA内の電位分布は下の極板からの距離をæとすると図2のように表される.コンデン サーB内の電位分布を図2中に示せ. (5) A,Bのコンデンサーの同じ極性どうしを接続すると電荷はどちらからどちらに移動するか. (5)の状態のまま十分時間が経ったとき,コンデンサーの電圧はいくらか. d Vo 4d 導体板 2 d d コンデンサーA コンデンサーB 図1 ( E V = = 805 Q GOS Q:CK 80 S · 4= 4d (2) Q=Co (3) 4d 905 Vo 4a V: @x2d S Q:CV 805 CK CB = 2d" +++5 x 2d 4d 図2 (5) AB ④ 正電荷 日負荷 (6) 同じ極性つまり並列につなぐ V= CA QB CB Qn'+QB'=2QA QA = V CA QB VCB V(CA+CB):2QA v ( 205 +2805): 22k 4d+48d ※QAQである V (145) .263 Vo 49 V = Vo 品 へいれつ こしは同じ!!

回答募集中 回答数: 0
物理 高校生

途中式と共に解答をわかりやすく教えて欲しいです。 とても急いでいます。 図々しいですが、よろしくお願いします。

[注意事項] ○ 解答欄の[ ] 中に単位を忘れずに記入すること。 ○ 計算の結果は小数で答え, 割り切れない場合は小数第3位を四捨五入して答えなさい。 文字を含む解答・倍数を答える場合は分数で解答すること。 有効数字は考慮しなくてもよい。 20.50g 1. 図の実線波形は、x軸の正の向きに進む正弦波 [m]↑] の 時刻 t=0s のようすを示したものである。 実線波形が最初に破線波形のようになるの に, 0.50s かかった。 次の各問に答えよ。 (1) 時刻 t=0 のとき、 波の山はどの位置か。 0≦x≦10mの範囲で、 すべて答えなさい。 y[m〕↑ 0.2 -0.2 O -0.50 (2) 時刻 t=0s のとき、x=4mの媒質はどの様な振動状態か。 [静止・上向きに移動 ・ 下向 きに移動]から答えなさい。 (3) 時刻 t=0s のとき、 0≦x≦10mの範囲で、x= 0m と同位相の位置と逆位相の位置を答 えなさい。 0.5…..6 [~~-12 12=fX (4) 波の振幅,波長, 速さ,振動数を、 それぞれ求めなさい。 +=15 (5) 時刻 t=0.50s におけるx=34m の変位を求めなさい。 34÷6=5…..4 (6) 次の文章は波について述べた文章である。 ア~ウに入る適切な語句を答えなさい。 図 1 『物体の一部に生じた振動が次々と伝わる現象を波または波動という。 振動の方向と、波の進行方向が垂直な波を(ア)といい、振動と波の進行方向が平行な 波を(イ)という。(イ)は(ウ)とも呼ばれる。』 [x[m〕 2. x軸の正の向きに伝わる正弦波がある。 図1は時刻 t=0 の波形,図2はある位置における 媒質の時間変化を表している。 (1) 波の周期を答えなさい。 01 (2) 波が伝わる速さを求めなさい。 V- 2 2 20 ふく (3) 図2で表される振動をしている位置は、図1のどこか。 0≦x≦2.0m の範囲で答えよ。 y[m〕↑ 0.2 -0.2 波の進む向き A 図2 dey 0.05 〔m〕 1: t[s] 0 0.05 0.1

回答募集中 回答数: 0