学年

教科

質問の種類

数学 高校生

N(p,n分のpq)とN(m,n分のσ二乗)って一緒なんですか?なんで違う式になってるかわからないです あとそもそも母比率と標本比率の関係がわかりません 教えてください

5 B 標本平均の分布と正規分布 ある工場で製造された製品について 不良品の割合を調べる場合のよ うに,母集団の各要素が,ある特性 A をもつかどうかを調査の対象と することがある。このとき,母集団全体の中で特性 A をもつ要素の割 合を,特性 A の 母比率という。これに対して,標本の中で特性 A を もつ要素の割合を,特性 A の標本比率という。 特性 A の母比率がpである十分大きな母集団から,大きさがnの標 本を無作為に抽出するとき 標本の中で特性 A をもつものの個数をT とすると,Tは二項分布B(n, p)に従う。 標本 則が成り立 標本平場 母平均 5 出する Nm 母集 分布 N 15 10 よって,g=1-p とすると, 86ページで学んだことから,nが大き いとき,Tは近似的に正規分布N(np, npg) に従う。 特性 A の標本比率を R とすると,R=- Tである。Rは標本平均 X 例題 10 n 9 と同様に確率変数で PAR E(R)=E(T)=1+np=p V(R)-112V(T)=1212.npa pq •npg= n ☆正規分布) したがって,標本比率 R は近似的に正規分布 Np, pq に従う。 n (6) 15 標本比率 R は,次のように考えると, 標本平均 X の特別な場合になる。 特性 A の母比率がである母集団において, 特性A をもつ要素を1, もたない要素を0 で表す変量 x を考えると,大きさんの標本の各要素 20 を表すxの値X1,X2, ......, Xn は, それぞれ1または 0 である。 特性 A の標本比率R は, これらのうち値が1であるものの割合であ るから h大きいとき X1+X2+......+Xn R= hXIII N (p, PHP), Ri n N(ゆ)に従う 20 4

回答募集中 回答数: 0
数学 高校生

大問105だけ、はさみうちの原理使ってるんですけど、使うときと使わない時の判断ってどうやってるんですか?式のどの部分を見たら「はさみうち」使って解く!って分からんですか?

第2章 極限 三角関数と極限 1 関数の極限と大小関係 limf(x) =α, limg(x) =β とする。 xa pix 1 xがαに近いとき,常に f(x) ≦g(x)ならば a≦β 2xがαに近いとき,常に f(x) (x)g(x) かつα=β ならば limh(x)=a 注意 上の事柄は,x→∞, x→∞の場合にも成り立つ。 ■ 次の極限を求めよ。 [104, 105] 1-cos 3x □ 104(1) lim x→0 x2 1 *105(1) limxcos 0+x x 第2節 関数の極限 31 0 (2) lim sinx2 x01−cosx (2) lim 1+sinx XII∞ x 第2章 極限 注意2を「はさみうちの原理」 ということがある。 例題 3 limf(x)=∞ のとき,十分大きいxで常に f(x)≦g(x) ならば limg(x) =∞ |2 三角関数と極限 sinx lim x0 x x =1, lim -1 (角の単位はラジアン) x-0 sinx STEPA 中心が 0, 直径 ABが4の半円の弧の中点をMとし, Aから出た光線 が弧 MB 上の点Pで反射して, AB上の点Qにくるとする。 (1) 0=∠PAB とするとき, OQ の長さを0で表せ。 (2) PBに限りなく近づくとき, Qはどんな点に近づいていくか。 |指針 Aから出た光線か MB上の点Pで反射して, AB上の点Qにくるとき ∠OPA = ∠OPQ sin O 求めるものを式で表し、 などの極限に帰着させる。 解答 (1) 右の図において ✓ 99 次の極限を調べよ。 ZOQ= ∠OPA=∠OAP=0 ∠PQB= ∠PAQ+ ∠APQ=30 M 2 (1) lim cos- *(2) lim (3)lim x tanx x–0 sinx よって ∠OQP=30 △OPQに正弦定理を用いると,P=2 であるから 30 0 Q B ■次の極限を求めよ。 [ 100~103] ✓ 100 (1) lim x→0 sin 4x XC sin2x *(2) lim x-0 sin5x (3) lim x-0 tant sin3x tan2x-sinx □ 101 (1) lim- *(2) lim x→0 x 1-cos 2x x-0 xsinx (3) lim x→0 sin3x+sinx sin2x □ 102(1) lim COS X x-Sin2x (2) lim- sin2x (3) lim x01−cosx 103*(1) lim tan x X10 x *(4) lim- sinлx x-1 x-1 1−cosx t- sinx STEPB *(2) lim X→π OQ 2 sin O sin(-30) また, sin (π-30)=sin30 であるから 2sin OQ= sin 30 (2)PがBに限りなく近づくとき, 0 +0 である。 このとき 2 sin 2 sin 3 2 lim OQ= lim lim 8+0 o sin 30 0-40 3 0 sin 36 3 よって,Qは線分 OB上の0からの距離にある点に近づいていく。圏 □ 106 半径αの円周上に動点Pと定点Aがある。 Aにおける接線上に AQ=AP であるような点Qを直線OAに関してPと同じ側にとる。PがA PQ に限りなく近づくとき, AP の極限値を求めよ。 ただし,Pは ∠AOP (0<< AOP < 1)に対する弧AP の長さを表す。 sin(x-7) x-π (3) lim x-- tanx xn ax+b 1 sin(sinx) (5) lim x→0 sinx 1 107 等式 lim (6) limxsin COS x 2x が成り立つように, 定数a, b の値を定めよ。

未解決 回答数: 1
数学 高校生

3番で、まるで囲んだ部分がなぜn -1にならないのか教えて下さい!

ネズミなどの一部の野生動物を除き, 野生動物を無断で捕獲することは 「鳥獣保護法」によって 禁じられている。 例えば, スズメやメジロなどを捕まえて飼育することは違法行為であり,農作物 に被害を与えるイノシシなどを捕獲することについても、事前の許可と「狩猟免許」 が必要になる。 ある野生動物 Sは誕生,死亡を含めて、1年間の個体数推計値の自然増加率は120% である。す なわち、ある年末の野生動物Sの個体数推計値が約100 万頭とすると、捕獲を行わないと翌年末の 個体数推計値は約120万頭になる。 野生動物 S の 2020 年末における個体数推計値は約 200 万頭であった。このとき、以下の問いに 答えよ。 240 (1) 野生動物 S の捕獲を禁止した場合, 2021 年末における個体数推計値は約 アイウ万頭に なる。 200×1.2= 220 野生動物Sによる農業被害が甚大なため,2021年初めから毎年 20 万頭ずつ捕獲を行うことを264c 検討した。 2. (i)(1)より, 野生動物Sの捕獲を禁止した場合の2021 年末の個体数推計値は約 アイウ万頭 になるが, 20万頭を捕獲した場合, アイウ万頭から20万頭を除くと考えることにする。 2021 年初めから毎年20万頭ずつ捕獲を行った場合, 野生動物Sの2021 年末の個体数推計値 は約 エオカ 万頭になる。 20. 以下の設問 ((), (3)では, 野生動物の捕獲を行った場合の個体数推計値を,この考え方 と同様にして計算するものとする。 220×1.2-20:244 22 244×1.2-20=272.8 コサ万頭である。 (i) 2024 年末における野生動物Sの個体数推計値は約 キクケ 220 X 1.2 490 307.36 2728×1.2-20= ACUM () 野生動物Sの個体数推計値が初めて500万頭を超えるのはシスセソ 年中である。なお, 必要ならば 10g102=0.3010, 10g103= 0.4771 を用いてよい。 2 2 5 2「 (3) 2024年末に野生動物Sの個体数推計値が 180 万頭以下になるためには,2021年初めから毎年3 少なくともタチ 万頭ずつを捕獲しなくてはならない。 ただし,1万頭未満の数は切り上げて 答えよ。

解決済み 回答数: 1
1/3