学年

教科

質問の種類

数学 高校生

数学1Aです! (タ)の求め方がわかりません。図の書き方が分からず悩んでいます。特に蛍光ペンのところがわからないです…どなたかよろしくお願いします🙇‍♀️

数学Ⅰ (2)太郎さんの住んでいる街にはK電鉄のA 駅, B 駅, C駅があり, A駅とB駅の 間の線路はまっすぐである。 「STATION A 駅 3駅の位置関係は A駅とB駅の間の直線距離が13km 駅 数学Ⅰ (i) 太郎さんはスマートフォンを持って電車に乗り, A駅からB駅まで移動した。 出発時にアプリに表示されていたのはA駅のみであったが, 出発からちょうど 分後にアプリに ソ ソ の解答群 STATION 10000 +++ B 駅 A駅とB駅の2駅のみが表示された ① A駅とC駅の2駅のみが表示された ② A駅とB駅とC駅の3駅が表示された (i) 1年後にC駅が移転し、 移転後の3駅の位置関係は B駅とC駅の間の直線距離が 5km C駅とA駅の間の直線距離が12km である。 また, 近隣に他の駅はない。 太郎さんのスマートフォンには最寄り駅が表示されるアプリが入っている。 ただ し,最寄り駅とは,スマートフォンからの距離が最も近い駅のことである。 そのア プリでは, 最寄り駅が複数ある場合はすべての駅が同時に表示される仕様になって いる。 以下では,駅および太郎さんがスマートフォンを持って乗っている電車は同じ平 面上の点とみなす。 また, A駅からB駅まで運行する電車はA駅とB駅を結ぶ線分上を動くものと し, その速度は加速・減速を無視し, つねに時速78km であるとする。 A駅とB駅の間の直線距離が13km B駅とC駅の間の直線距離が 5km C駅とA駅の間の直線距離が10km となった。 C駅の移転後に, 太郎さんはスマートフォンを持って電車に乗り, A駅からB 駅まで移動した。 このとき, アプリに複数の駅が最初に表示されるのは,出発か らおよそ タ 後である。 その後、 再び複数の駅が表示されるのは,B駅に到 着するおよそ チ 前である。 タ の解答群 3分46秒 3分56秒 ② 4分6秒 ③ 4分16秒 C駅 12 km 5km チ の解答群 AR 13km B 駅 ⑩ 2分40秒 ① 2分55秒 ②3分10秒 ③3分25秒 (数学Ⅰ第2問は次ページに続く。) 31

回答募集中 回答数: 0
数学 高校生

なぜ、直線Mにおいての任意の複素数をZと表すことができるんですか??直線Lの方でもZが使われてて違うものなのになぜ同じ文字でおけるのか教えて欲しいです!!

B(β) z-a z-a よって, 7-B Y-B. Think 例題 C2.36 垂線の方程式,垂心 **** 複素数平面において, 単位円周上に異なる3点A(a),B(β),C(y) を 定める. ことを証 (1) 点Aから直線 BC に垂線lを引くとき, この垂線ℓ上の任意の点 D1S P(z)について、z-a=By (2-2) が成り立つことを証明せよ。 (2) △ABCの垂心を α, β, y で表せ. 考え方 (1) 点A(a),B(3), C(y), P(z) について,|a|=|β|=|y|=1 解答 APLBC または z=a z-a (山形大改) (2) 点Bから直線CAに垂線を引くとき,この垂線上の任意の点Q (ω) について (1) 1-1が純虚数または01-8=-1 と同様の式が成り立つ垂心は z=w となる複素数である. (1) Pは垂線上の点なので, AP⊥BC または z=α より z-a -は純虚数または 0 Y-B (A(α)→0(0) とな [B(B) → 0(0) るように平行移動す Pzると,P,Cは、それ A(α)ぞれ [P(z)→P (z-a) IC(y)→C^(-3) YA P 1. 0 -1 1 上にある であるから, C(r)-1=0 に移る. z-a z-a A 7-B Y-B 両辺に y-βを掛けて, P'(z-a) z-α=-(y-β) (28) Ala ・① ここで, 3点A(a),B(β), C(y) は単位円周上の点よ り |a|=|β|=|y|=1 C'(r-B) よって, zキαのと したがって,|a|=||=|y|=1 であるから, OP OC を aa=βB=yy=1より, 0のまわりに今だ a= B= y= .....2 a B' A (0-8)=0 け回転して実数倍 したベクトルより ②①に代入すると, Z z-a=-(y-β) =BY (1) 1 1α18 8 2- a a =(β-y)- B-Y B BY よって 00: Z ・③ となり、題意は示された「円 z-a=k cos a=k(cos +isin(7-8) RY=ki(7-8) は0でない実数) よって zaki (純虚数 または0) CES ③は直線lの方程式 (1+1を複素数で表現した 2

回答募集中 回答数: 0
数学 高校生

問題3枚目、図・表1.2枚目です。問題の2.3.4.が分からないです。わかる所だけでも解説よろしくお願いします。

20 TV 34 2019 年度 総合問題 次の文章を読んで、後の問1~問5に答えなさい。 図1は、経済協力開発機構(OECD) 印度でいるのが国の相対的武術の タである。 相対的貧困率とは、各国の所得分布における中央値の50%に満たない 人々の総人口に占める割合である。 20% 18% 16% 14% 12% 10% 8% 6% 4% 2% 0% チェコ フィンランド フランス アイスランド デンマーク 5 オランダ ノルウェー スロバキア オーストリア スウェーデン スイス ベルギー スロベニア アイルランド イギリス ドイツ ハンガリー ルクセンブルク ニュージーランド ポーランド 5-5 OECD平均 福山市立大・柳瀬 韓国 カナダ イタリア ポルトガル オーストラリア ギリシア スペイン 図1 相対的貧困率の国際比較」 スエチ エ 日本 チリ リトアニア 「ラトビア ストニア トルコ イスラエル アメリカ 福山市立大 表 世帯総 平均世帯 相対的 平坦 中 15.7 注1) 各国のデータは,2012年~2016年のデータの中で最新のデータをもとにし ている。 出典:経済協力開発機構 (2018), Income distribution, OECD Social and Welfare Statistics (database), https://doi.org/10.1787/data-00654-en をもとに作成 ETUT ROB09229 表1は,日本における世帯数と世帯人員,各世帯の所得などの年次推移を示してい る。表2は,各国の絶対的な貧困率を示すデータである。絶対的な貧困率とは、経済 的な理由のために,食料が買えない,医療を受けられない、衣服が買えないなどの状 態に,過去1年間に陥ったことがある割合を示している。 torn at T som med sin blunded vonom an

回答募集中 回答数: 0
数学 高校生

(1)数列の和から一般校を求めるやり方ですが このやり方だと、snとsn-1の差から公差を求めているので等差数列しかもとまらなくて階差や等比の場合にはもとまらなくないですか?

446 解答 0000 基本 例題 24 数列の和と一般項, 部分数列 |初項から第n項までの和SnがSm = 2n²-n となる数列{an} について (2) 和α+a+as+ +αzn-1 を求めよ。 p.439 基本事項 基本4 (1) 一般項an を求めよ。 指針 (1) 初項から第n項までの和Snと一般項an の関係は n≧2のとき Sn=a+a+ -) Sn-1=a₁ + a₂+. Sn-Sn-1= (1) n ≧2のとき +an-i+an an よって an=S-Sn-1 n=1のとき a1=S1 和 Smがnの式で表された数列については,この公式を利用して一般項an を求める。 (2) 数列の和 まず一般項 (第k項) をんの式で表す .... 第k項 .......+an-1 第1項、第2項,第3項, a1, a3, a5, a2k-1 であるから, an に n=2k-1 を代入して第k項の式を求める。 なお, 数列 a1, A3,A5, ....., azn-1 のように, 数列{an} からいくつかの項を取り除 いてできる数列を, {an}の部分数列という。 =4n-3 ① an=Sn-Sn-1=(2n²-n)-{2(n-1)²-(n-1)} また a=Si=2・12-1=1 ここで, ① において n=1 とすると よって,n=1のときにも ① は成り立つ。 したがって an=4n-3 (2)(1)より, 2-14(2k-1)-3=8k-7であるから ...... α=4・1-3=1 n atastat...... +a2n-1=22k-1=2 (8k-7) k=1 n k=1 = 8. n(n+1)=7n =n(4n-3) S=2²-nであるから Sn-1=2(n-1)²-(n- 初項は特別扱い am はn≧1で1つのボ 表される。 a2k-1 lan=4n-31 いてぃに2k-1を代 の公式を利用 n≧1でan=S-S-」 となる場合 例題 (1) のように, an = Sn-Sn-1 でn=1 とした値と α が一致するのは, Smの式でn= 検討 したとき So=0 すなわち n の多項式 Sn の定数項が 0 となる場合である。 もし、 Sn=2n²n+1(定数項が -S-S1-1=4n-3(n≧2))) り SPEE

回答募集中 回答数: 0
1/4