学年

教科

質問の種類

数学 高校生

Focus Gold 数学II 例題98 写真の赤線部はなぜ成り立つのですか?

例題 98 円外の点から引いた接線(2) 2円の方程式 ***** x+y=5に点 (31) から接線を2本引く。そのときの2つの接点 P,Q とするとき,直線PQ の方程式を求めよ。 [考え方 接点の座標をP(x, yì), Q(x2,y2) とおいて求める 解答 接点をP(x1,yi), Q(x2,y2)とすると、 点Pにおける接線は, xx+y=5 3x+y=5Q...① 3x2+y2=5... ② これが点 (31) を通るから, 点Qにおいても同様にして ①②より、点P. Qは直線 3x+y=5 上の点である 2点PQ を通る直線は1本に決まるので、直線 PQ の方程式は, 3x+y=5 (別解) 点R(3,1) とする. △OPR と △OQR は合同な三角形 だから、対称性より, OR⊥PQ 円x+y=r上の 点(x1, yi) における 接線の方程式 xx+y=r YA R(3, 1) √5- P P (3. 0 x x 1Q これより直線PQの傾きは3で あるから kを実数として, 直線 PQ は,y=-3x+kとおける 0 1QS 原点と直線 PQ の距離 dは, d= |-k| k √32+12 10 ここで 直線 OR と直線 PQ の交点をSとすると, (直線ORの傾き) (直線PQの傾き) 図より, k0 △OPR∽△OSP であり, OR=√10 OP√5OS= k ∠POR = ∠SOP, √10 ∠OPR = ∠OSP だから5:10:5 k=5 10 OP: OS=OR: 0 よって、 直線 PQ の方程式は、 y=-3x+5 Focus 円外の点(x,y) から円x+y=r" に引いた接線の 2 接点を通る直線は, xox+yoy=r.2 (極線) 注 <証明> 接点を (x1,y1)(x2,y2) とすると, 接線はxx+yy=rx2x+yzy=r YA (xo, yo) (x, y) となりともに点(x,y) を通るから, xix+yiyo=r2, x2x+yayo=r2 (*) O X2Y2 ここで, 直線 Xox +yoy=r を考えると、 (*)より(x,y) (x2,y2) はこの直線上の点である。 よって, 求める直線は, xox +yoy=r(証明終) 同様に考えて、円外の点(x0,yo)から円(xa)(y-b)=rに引いた接線 の2接点を通る直線の方程式は, (xa)(x-a)+(yo-b)(y-b)=r 練習x+y=10 に点(5, 5) から接線を2本引く。 そのときの2つの接点を結 98 直線の方程式を求めよ。 ***

解決済み 回答数: 1
数学 高校生

解答が正解しているか見てほしいです。間違っていたら正しい解き方と答えを教えてほしいです。

1.2 けたの6の倍数がある。 十の位の数は一の位の数よりも4大きい。 この2けた の数はいくつか。 2けたの数のうち、十の位が一の位の数よりも4大きい数は、40.51.62,73,84 95である。このうち、6の倍数は84。 84. # 2.3で割り切れる2けたの数がある。 一の位の数は十の位の数よりも6大きい。 十の位の数と一の位の数をかけ合わせるといつくになるか。 つけたの数のうち、一の位は十の位の数より6大きい数は、60,7 このうち3であり切れるのは、93 71,82930 十の位と一の位の数をかけ合わせると、9×3=27で 27。 27, 3.2けたの偶数がある。 十の位の数と一の位の数の和は13, 差は1である。この 偶数はいくつか。 つけたの数のうち、十の位と一の位の数の和が13なものは、495867,76 85.94半の位と一の位の数の差がしなものは、67,760 このうち偶数は76 76. 12 4. 十の位の数と一の位の数の和が11である2けたの数がある。 十の位の数と一の 位の数を入れかえた数と、もとの数との差は63である。 十の位の数と一の位の数を かけ合わせるといくつになるか。 2けた。数のうち、それぞれの位の和が1のものは29.38、47,56,65,74,83 92。 それぞれの位の数を入れかえた数ともとの数との差は63。これにあて はまるのが29,920 それぞれの位をかけ合わせると、2×9=1で180 18 + 5. 十の位の数と一の位の数の差が5になる2けたの数がある。 一の位の数は十の位 の数の約数である。 この2けたの数はいくつか。 つけたの数のうち、十の位と一の位の数の差が5になるのは。 50,61,7283 94.49.38.27.16。このうち、一の位の数が十の位の数の約数である数 はか。 61.

解決済み 回答数: 1
1/93