学年

教科

質問の種類

数学 高校生

問2のq’の式の分母に2かけてるのはどうしてですか

この日, もつことになる。 がαより引き継がれやすいと, 世代を重ねるごとに変動をしながら, Aの遺伝子頻 度が大きくなる傾向になると考えられる。 153 問1 BB の個体: 36% Bbの個体: 48% bbの個体: 16% 問2 0.29 問3 41個体 Key Point 自然選択が働くと、特定の遺伝子型の個体が取り除かれ,ハーディー・ワインベルグの法 則は成り立たない。 解説 問1 遺伝子Bの遺伝子頻度をか. 遺伝子の頻度をg (p+g=1) とすると,この集団に おける遺伝子型の頻度は次の式で求められる。な (pB+qb)²= p²BB+2pqBb+q²bb とは いる。 よって, 遺伝子型 BB の個体の割合は2=0.62=0.36, 遺伝子型 Bb の個体の割合は2pg=2×0.6×0.4=0.48, 遺伝子型 66 の個体の割合は4=0.4=0.16 となる。 問2bbの個体がすべて取り除かれた後の, 対立遺伝子の遺伝子頻度を′とすると. BBの個体の割合が 0.36, Bb の個体の割合が 0.48 であったので(sp+Mo 0.48 g′'= (0.36 +0.48) ×2 0.48 0.84×2 =0.285≒0.29 となる。 変化後の遺伝子頻度で自由交配が行われれば, ハーディー・ワインベルグの法則から次 世代における遺伝子頻度は変わらないので,bの遺伝子頻度は0.29である。 問3 対立遺伝子の遺伝子頻度が0.29 なので, bb が取り除かれた後の対立遺伝子Bの 遺伝子頻度かは、 al p'=1-0.29=0.71 st Bb の個体の割合は2pg′=2×0.71×0.29=0.4118 ≒ 0.41 総個体数が100個体であれば,B6の個体数は100×0.41=41)

回答募集中 回答数: 0
数学 高校生

確率の問題です。 (2)の解説を読んでもいまいちピンとこず、止まってしまっています。 特に不等式の変形、そして成り立つabcの求め方が自分にとっては複雑に感じます。 飛ばしたほうがよいでしょうか? 知恵袋では、スマートで応用の効く求め方もありました。そこでの疑問があり 「a... 続きを読む

EX 332 次の問いに答えよ。 (1) 1/+1/21 -≧1 となる確率を求めよ。 a 大・中・小3個のさいころを同時に投げて、出た目の数をそれぞれa, b, c とする。 このとき [滋賀] a (2)/1/+1/2/ となる確率を求めよ。 (1)[1] a=1のとき bの目は1~6の 6通り [2] α=2のとき b=1,2の2通り 知恵袋に [3] α=3 のとき b=1の 通り a=4,5,6 のときも同様に1通りずつ [1], [2],[3] から, 求める確率は 1 1 1 -≥ である。 a 6 6 3 [1] c=3,4,5,6 のとき 結果はcの値にはよら ないので,2個のさいこ ろの目のみについて考え 別解ありればよい。 6+2+1×4=130 62 a,bは何であっても不等式が成り立つから, いずれも36通りずつ [2] c=2 のとき 1 a 12 を満たすα, b を求める。 a = 1, 2, 3 のとき 1=1 1=1 6から1/22/16 b≤6 a 1から言 c≧3 であるから 11 C M + ab VII a 11/11/13 から 2 a 11 1 また 1/13/1 13 12 1 +a≤3 6 +6≤6 Jei 6 b よって、すべてのbに対して 12/21/11/12が成り立ち、い ずれも6通りずつ a b 6=1,2,3,4の4通り a=4 のとき a=5のとき 6=1,2,3の3通り a=6 のとき [3] c=1 のとき (1)の結果から 12通り b=1,2,3の3通り [1],[2],[3] から, 求める確率は 36×4+(6×3+4+3+3)+12_184_23 63 216 27 27 1 IIV b 12 10 b

回答募集中 回答数: 0
数学 高校生

解説お願いします。 右ページの『キ』が答えは⑨なのですが、解説には『キ』は答えのみしか載っていなくて、なぜ⑨になるのか分からないので、途中式含めて教えていただきたいですです。 よろしくお願いします。

(注)この科目には、選択問題があります。 数学Ⅱ, 数学 B 数学C 015779 第1問 (必答問題) (配点 15 ) (1) 次の問題Aについて考えよう。 (i) p>0のときは, 加法定理 cos(e-α)= cose cosa + sino sin α を用いると y = sin0 +pcoso= キ cos(e-α) と表すことができる。 ただし, αは 試作問題 数学Ⅱ・B・C ケ 問題A関数y = sin 8 + vscose (0≧≦)の最大値を求めよ。 sin α = COS α = 0<α< キ キ TI √3 を満たすものとする。 このとき, yは0= コ で最大値 sin/ = , COS 2 ア TT ア = 1/ り立つ。 であるから, 三角関数の合成により g=2sin(a+1/4) サをとる。 2 π y= イ | sin 0 + ア 2 (ii) p<0 のとき, yは0= で最大値 ス をとる。 T と変形できる。 よって, yは0= で最大値 I をとる。 キ ケ サ ス の解答群 (同じものを繰り返し選 ウ んでもよい。) (2)pを定数とし、次の問題Bについて考えよう。 問題B 関数 y= sin0 +pcose (O≦es/z/)の最大値を求めよ。 にく (i) p=0 のとき,yは0= で最大値 をとる。 オ (数学Ⅱ 数学 B. 数学C第1問は次ページに続く。) -2- 0 -1 1 -p P ④ 1-P 1+P ⑥-p² ⑦ p2 1-p2 1+p2 @ (1-p)² (1+p)2 コ シ の解答群 (同じものを繰り返し選んでもよい。 ) 0 ①a -3-

回答募集中 回答数: 0
1/1000