学年

教科

質問の種類

数学 高校生

69. なぜこの解き方では答えが求まらないのでしょうか?? (指針ではOH・AB=0,OH・AC=0だと書いていますがOH・BC=0も成り立つと考えこれを用いて求めようとしました。)

基本例題 69 平面に下ろした垂線 (1) 00000 空間において, 3点A(5, 0, 1),B(4,20, 0, 1,5) を頂点とする三角形 ABCがある。 原点O(0, 0, 0) から平面ABCに垂線を下ろし, 平面ABCとの 交点をHとするとき, Hの座標を求めよ。 MOKE LAANE 指針点 0 から平面ABCに下ろした垂線の足Hに対して, 点Hは平面ABC上にあり,かつ,直線OH は平面ABC に垂直である ととらえて考える。 ... HOX- 外直線OH は平面ABCに垂直であるから、直線 OH は平面ABC 上のすべての直線と垂直である。 ただよって、OHA, OHAC ゆえに OH・AB = 0, OH・AC=0 する単位べク |解答 AB=(-1,2,-1), AC = (-5, 1,4)×0+0×S+(I−)×(1 ①点Hは平面ABC 上にあるから, AH=sAB+tAC (s, tは実 CHONDRAL 114 60 数) (*) とおける。 ゆえに OH=OA+AH $1-01x6 =OA+sAB+tAC =(5,0,1)+s(-1, 2, -1)+t(-5, 1,4) ①00× =(5-s-5t, 2s+t, 1-s+4t)・ OH (平面ABC) であるから OH⊥AB から OH・AB=0 よって ゆえに OHACから 2s+t=2 -(5-s-5t)+2(2s+t)−(1¬s+4t)=0 OH・AC=0 よって ゆえに ② ③ を解いて よって, ① から ...... -5(5-s-5t)+1・(2s+t)+4(1-s+4t) = 0 s+14t=7 OHLAB, OHLAČ S= 7 9' 9 H(2, 2, 2) A t= - (801) A C x TEL ZA HA4 C OH B HO 重要 71 ****** CA SCORT! B (8)=(2004)+(A)+¹(SADA) A (*) OH =LOA+mOB+nOC, l+m+n=1として考えても よい。 (0) 487 2章 9 位置ベクトル、ベクトルと図形

未解決 回答数: 1
数学 高校生

3/4-x² がどこを表しているのか分かりません💦

340 基本例題 217 放物線y=x2と円x2+ 両端とする円の2つの弧のうち, 短い弧と放物線で囲まれる図形の面積Sを 求めよ。 CHART & SOLUTION 面積を直接求めるのは難しいため、 図のよ うに、直線と放物線で囲まれた部分の面積 を補助的に考え、三角形や扇形の面積を足 し引きする。 放物線と円の面積 ¹+(y – 5)²=1 ****** 三角形の面積と扇形の面積は公式を,直線 と放物線で囲まれた部分の面積は積分を 用いる。 3 9 16 = -=0 + 1 が異なる2点で接する。 2つの接点を 23 よって (y - 3)² = 0 y=2のとき x=± 2 よって, 放物線と円の共有点の座標は (43.2) (-43, 3) √3 2 4 3√/3-2/3 T 4 2 ∠QRP= 37 であるから また,図のように P, Q, R をとる。 求める面積Sは,図の赤く塗った部 分の面積である。 岡本 ゆえに Q 解答 放物線と円の方程式からxを消去するとy+(y_2 ) 2-1 =1 1 整理すると y²-- R ------ O S y= (3 4 P Q 3/4 √3 2 O PQと放物線 が囲む部分 R 5 4 R 2 . S s = √²/12 ( 8 - x²) x + 1/2 · √ 3 · 1/2 - 1/2 ·1. z π 2 - - (- 1²) (1/³² - (- ~√ ²³ ) ² + 4√³ - 13 √√3 = 2 2 P O 12k y=x2 TH まずは、放物線と円の 有点の座標を求める。 (S(を消去し,yの2次 1--32 R √3 O ARPQ 1 4 形RPQ 式を考える。(p.155 重要 例題 95 参照 ) 23 CHART 絶対値 まず, 絶対 場合の分か (1) x-2 y=xにy=2 x=270 から R 本 例題 218 S₁1x-21 √3 2 (8-(1+))) 21/1/2 高さは RPQの底辺は3 (2) x². foff 円年 (1) & 半径中心角の扇形 の面積は 1/2120 ・和 U

回答募集中 回答数: 0
数学 高校生

(ii)において全問で3次関数の接線L1を導出して、それとは別の等しい傾きの接線L2を考え、L1と囲まれた面積をS1、L2とはS2とするとS1=S2となるのですが傾きが等しい接線だからでしょうか。 解答では傾きを平方完成してt=1で対称であるためとされていますが解いていて思... 続きを読む

そして,l と傾きが等しい C”の接線が存在するのはX tキー+2 すなわち t≠1 のときである。 &」 と傾きが等しい ” の接線のうち, & でない方の接線をl2とし&と C” とで囲まれた図形の面積を S1,l2 と C" とで囲まれた図形の面積を S2 と すると,Sのグラフと l の傾きを表すグラフがともにt=1に関して対称 であることから, S1 = S2 であることがわかる。 となるので したがって, S1+S2 = 1 であるとき 3 S=S2=1/ 4 ゆえに 27(1-t)4 (1-t)4 = 16 4 1-t=± t= である。 81 2 5 2 3 3 S2 3 1 S1 iQ C" -l₁ -l₂ 8.0=0.1×8.0= -t + 2 -2t + 3 (8253272609 よって, l1 の傾きは 2 3 {(1) ² - 2.-3} = 3 - (-32) = 32 9 This HAR JO (100%* 2542120-3.0- = 88.0 × 8.0 = (2,02720)1-30=120-20 2806 S1のグラフ S₁ = l1 の傾きm を表すグラフ m=3t2-6t-9 27(1-t)4 4 =3(t-1)2-12 はどちらも t = 1 に関して 対称である。 8.0-Y 20.1 107.5875 AMAS 34 (7.02 YA ■3(t2-2t-3) にt=1/13 を 代入する。 3t2-2t-3) に t= = 1 を代入してもよい。

回答募集中 回答数: 0
数学 高校生

数Aのさいころの目の最大値・最小値の問題です。 (3)なのですが、教科書の黄色マーカー部分P(BかつC)の求め方が分かりません。 また、ノートの黄色マーカー部分なのですが、 P(B)+P(C)-P(BかつC) はもともとP(BUC)のことを意味しているのでしょうか。 解説を... 続きを読む

231 最小値 さいころを同時に投げるとき、次の確率を求めよ。 目の最大値が4以下となる確率 目の最大値が4, 最小値が2となる確率 条件の言い換え (1) 最大値が4以下 すべて 1, 2, 3,4のいずれかの目が出る。 ②) (1)の考え方では, 「1,1,1,1」 と出て, 最大値1の場合 (2) 目の最大が4となる確率 などが含まれているから, その場合を除く。 「1, 3, 2, 1」 と出て, 最大値3の場合 最大値がんとなる確率は,最大値が以下の確率から(k-1)以下の確率を引け [最大値4 Action>> (3) すべて 2~4の目が出て、 2と4の目が少なくとも1回ずつ出る。 > 最大3以下 目の最大値が4以下であるためには, 4個のさいころ の目がすべて 1,2,3,4のいずれかであればよい。 よって、求める確率は (²4) * = (²/²)* 3 4 (1)-(12/2)=1/16 すべて すべて2,3 求める確率は - (2) 目の最大値が4となるのは, 目の最大値が4以下となる場合から、目の最大値が3以 下となる場合を除いたものである。 ここで、目の最大値が3以下となる確率は よって, 求める確率は (3) 4個のさいころの目が すべて 2,3,4のいずれかである事象をA, 3,4のいずれかである事象をB, 16 81 16 1 175 81 16 1296 (1)-1 のいずれかである事象をCとすると, P(A)-{P(B)+P(C)-P(B∩C)} 4 - ( ²³ )* - {( ² ) * + ( ²³ ) * - ( ² )*)}= = (08/10)710/4+0+ 25 最大4以下 「目の最大値が以下」 や 「目の最小値がk以上」 である確率は求めやすい。 これを用いて (2) を求める。 Point 参照。 3以下 Tex 4個のさいころの目がす べて 1, 2,3のいずれか であればよい。 P(最大値が4) Point.…. さいころの目の最大値・最小値- (1) P(最大値がk)=P(最大値がk以下) -P (最大値がk-1以下 ) (2) P (最小値がk)=P(最小値がk以上) -P (最小値が+1以上) OLA P(最大値が4以下) -P (最大値が3以下) B' ∞ ■ 2314個のさいころを同時に投げるとき次の確率を求めよ。 (1) 目の最小値が4以上となる確率 (2) 目の最小値が4となる確率 (3) 目の最大値が5, 最小値が2となる確率 章 17 いろいろな確率 p.446 問題231

回答募集中 回答数: 0
数学 高校生

2.1 解き方ってこれでも問題ないですよね??

作り の符号で特 を考える とみ を図示 -26 28 2を買 同じ、 2倍 解答 内の 点 (1) AB+EC+FD-(EB+FC+AD) =AB+EC+FD-EB-FC-AD =(AB+BE)+(EC+CF)+(FD+DA) =AE+EF+FA=AF+FA kit. 基本例題2 ベクトルの等式の証明, ベクトルの演算 (1) 次の等式が成り立つことを証明せよ。 AB+EC+FD=EB+FC+AD 3倍 指針 (1) ベクトルの等式の証明は、通常の等式の証明と同 じ要領で行う。 ここでは, (左辺) - (右辺) を変形し て=0 となることを示す。 (2) (ア) x=2a-36-c, y=-4a+56-3C のとき, ya, b,こで表せ。 (イ) 4-3a=x+66 を満たすxをaで表せ。 (3x+y=d, 5x+2y=を満たす,をもで表せ。 を利用するこ 合成 P□+□=PQ, P=PQ ベクトルの計算では,右の変形がポイントとなる。 分割PQ=P+ℓ, (2) ベクトルの加法,減法,実数倍については,数式PQ=Q-□P と同じような計算法則が成り立つ。 向き変え PQ=-QP PP=0・・・ 同じ文字が並ぶと (ア) x=2a-36-c, y=-4a+56-3cのとき, の安心 x-yをa,b,c で表す要領で。 (イ) 方程式 4x-3a=x+66 (ウ) 連立方程式 3x+y=a, 5x+2y=b を解く要領で。 =AA=0 ゆえに AB+EC+FD=EB+FC+AD (2) (7) x−y=(2a-36−č) − (−4ã+5b−3c) =2a-36-c+4a-5b+3c =6a-8b+2c (イ) 4x3x+65から 4x-x=3a+65 よって ゆえに 3x=3a+66 x=a+2b Bi (1) 3x+y=a.. ① x2-② から これを①に代入して 6a-3b+y=a よって 1, 5x+2y=6 =2ab y=-5d+36 00000 ② とする。 CA 384 基本事項 ②③ ... CIDE 左辺(右辺) Sa+da+ sa 向き変えEB=BE など。 合成AB+BE = AÉ など。 検討 A□+□△+△A=0 (しりとりで戻れば ① ) この変形も役立つ。 ただし, それぞれ同じ点。 なお,00と書き間違えな いように。 両辺を3で割る。 6x+2y=2a 1-) 5x+2y=6 x =2a-b 387 1章 ベクトルの演算

回答募集中 回答数: 0
数学 高校生

191.2 記述(解き方)はこれでも問題ないですよね?

存在せず 必要条件 求める。 に、式を変 牛。 条件である -a-l ( 極限値)= なα, bのも ら -fla で、 きロー! じものにする 基本例題191 導関数の計算 (1) ... 定義, (x")'=nx-1 次の関数を微分せよ。 ただし, (1) (2) は導関数の定義に従って微分せよ。 (1+xS) 1 0のとき といって しては (1)y=x2+4x (3)_y=4x³—x²-3x+5 解答 指針 (1), (2) 導関数の定義 f'(x)=limf(x+h) f(x) h IJNS0 - (3) (4)次の公式や性質を使って, 導関数を求める。 (n は正の整数,k,lは定数) (r")=nx"-1 特に (定数)' = 0 {kf(x)+lg(x)}'=kf'(x)+lg'(x) (1)y'=lim- h→0 =lim =lim h→0 {(x+h)²+4(x+h)}-(x2+4x) h 1 x+h →08305+ (x+h)2-x2+4(x+h)-4x h =2x+4 y'=lim 2hx+h²+4h 1 h=lim(2x+h+4) x-(x+h). (x+h)x -h 1 h-ol (x+h)x h SxO+SI- =lim (2) b=-2 -1 条件である。 (3) y'=(4x-x-3x+5)、=4(x)(x²)、-3(x)+(5)、 h→0 (x+h)x となり、上の結果と一致する。 y= © 191 (1) y=x²-3x+1 (3) (4)y=-3x+2x3-5x²+7 (8+xs) (e+xs-x)=x -h (x+h)x +₁-1= 11.01+2とも =4・3x²-2x-3・1=12x²-2x-3)(1)g=11 (4) y'=(-3x+2x3-5x²+7)'=-3(x*)'+2(x²)、-5(x²)+(7)、 =-3.4x3+2・3x²-5・2x=-12x+6x²-10x 11r³+5r²-2x+1 であるから 1 を利用して計算。 1 x² p.296 基本事項 ③~5 f(x)=x2+4xとすると f(x+h) =(x+h)2+4(x+h) 項をうまく組み合わせて, 分子を計算する。 FON 導関数の定義式の分子 f(x+h)-f(x) を先に計算している。 検討x”の微分についての指数の拡張 STE p.296 基本事項 ④ において、(x)=x(nは正の整数)とあるが,nは正の整数に限らず, 負の整数や有理数であっても、この公式は成り立つ (詳しくは数学Ⅲで学習する)。 例えば、上の例題 (2) については, n=-1として, 公式(x")'=nx-1 を用いると ( ¹² ) = (x-¹) = − 1 ·x¯-¹-¹=-x^²=- <{kf(x)+lg(x)}、 =kf'(x)+lg'(x) <(r")=nx"-1 (定数)' = 0 練習次の関数を微分せよ。 ただし, (1), (2) は導関数の定義に従って微分せよ。 (2) y=√x (4) y=2x^-3x+7:0-9 (8) 301 6章 34 微分係数と導関数

未解決 回答数: 1
1/10