学年

教科

質問の種類

数学 高校生

数IIの軌跡の問題です 問題97、98にある棒線部分の「円1、2上にある」とは どうして分かるのでしょうか?

例 98 点に連動する点の軌跡 ①のののの x+y=9上を動くとき,点A(1,2)とQを結ぶ線分AQを2:1 に内分する点Pの軌跡を求めよ。 CHARTL & SOLUTION 連動して動く点の軌跡 つなぎの文字を消去して、 p.158 基本事項 1 161 xだけの関係式を導く 0 動点Qの座標を (s, t), それにともなって動く点Pの座標を (x, y) とする。 Qの条件をs, を用いた式で表し, P,Qの関係から, s, tをそれぞれx, yで表す。これをQの条件式に 代入して,s, tを消去する。 Q(s, t), P(x, y) とする。 Qは円 x2+y2=9 上の点であるから Pは線分AQ を 2:1 に内分する点であるから 1・1+2s1+2s 3 13 3 軌跡と方程式 s'+t2=9. ① (s, t), 11. A 1・2+2t_2+2 (1,2) 2+1 3 y= 2+1 3 -37 3x-1 よって s=- t= 2' 3y-2 2 こんに内分 これに代入すると(1)+(32) - 9 =9 ゆえに w+ li with 5h3. =4 ② したがって, 点Pは円 ②上にある。 逆に,円 ②上の任意の点は、条件を満たす。 以上から, 求める軌跡は 中心 (1/3/2/3) 半径20円 3' P(x,y) 3 つなぎの文字s, tを消 去。 これにより、 P の条 tug(xの方程式)が得 int 上の図から,点Qが [円x2+y2=9上のどの位 置にあっても線分AQは 存在する。 よって, 解答で 求めた軌跡に除外点は存在 しない。 POINT 曲線 f(x, y) = 0 上の動点 (s,t) に連動する点(x, y) の軌跡 ① 点 (s, t) は曲線 f(x, y) =0 上の点であるから f(s, t)=0 ② s, tをそれぞれx, y で表す。 ③ f(s, t)=0に②を代入して, s, tを消去する。

解決済み 回答数: 1
1/18