学年

教科

質問の種類

数学 高校生

なぜ点(0,0)を中心とする円になるのですか?

基本 例題 166 放物線の頂点が描く曲線など 491 00000 (1) 放物線y=x2-2(t+1)x+22-tの頂点は, tの値が変化するとき どんな 曲線を描くか。 (2)=の間を点P(x, y)が動くとき,座標が (y-x, 2xy) で 19表される点Qはある円の周上を動く。 その円の中心の座標と半径を求めよ。 解答 指針 88A 260 p.488 基本事項 2 (1) まず, 放物線の方程式を基本形y=a(x-p)'+αに直す。 頂点の座標を (x,y) とすると,x=(tの式),y= (tの式) と表される。 x=(tの式),y=(tの式)から変 数を消去して,x,yの関係式を導く。 (2)円の媒介変数表示 x=rcos 0, y=rsin0 を利用すると, 点Qの座標 (X, Y) も0で表される。 この媒介変数表示からX,Yの関係式を導く。 方がある。 CHART 媒介変数 消去して,x,yだけの式へ (1) y=x2-2(t+1)x+2t2-t ={x2-2(t+1)x+(t+1)^(t+1)^+22_003) Fa) ={x-(t+1)}'+t2-3t-1 (2000)x(ie 9 t=0 [=] よって, 放物線の頂点の座標を(x,y) とすると ①, y=t-3t-1・ e x=t+1 ...... ② ①から t=x-1の公式 これを②に代入して 左量よって 2006-)= tan y=(x-1)2-3(x-1)-1 y=x25x+3 2009(0) 243 -1- 0-3 13 y=x2-5x+3 4 章 2媒介変数表示 したがって,頂点は放物線y=x-5x+3を描く。 (2)x2+ye=re から, P(x, y) とすると tの値がすべての実数値を X.0 200- サイクx=rcos 0, y=rsin0 と表される。 Q(X, Y) とすると a) X=y²x²= r² (sin²0-cos²0) 200 るとき、モー(cos20-sin20)=cos2000mi D D とると,①のxの値もす べての実数値をとり頂点 は放物線y=x25x +3 全 体を動く。 Y=2xy=2rcose.rsin0=resin 20 X2+Y2=r*(cos'20+sin220)=r‘=(r2)2 よって ・位置 ゆえに点Qは点 (0, 0) を中心とする半径の円の にきたとき、Plex,y)とする 周上を動く。 参考 する。更に、 X, Y=Ocos A, -> 0口 sin△の形 sin △+cos △=1 の活 用を考えてみる。 のとき,点Pは円x2+y'="上を半周,点Qはx+y2=(r2)2上を1周 2πのとき,点Pは残りの半円上を動き,点Qは円上をもう1周する。 Aniacosx>00000 osino),y=a(1-cost) (Jすることはできない。 22>0 変化するとき,どんな

解決済み 回答数: 1
数学 高校生

(2)の波線が引いてあるところはどのような変形でこうなりましたか? 分数だったのに急に掛け算になっててわかりません....🙇🏻‍♀️

千葉大学 理系 図形と式 (1998~2020) 問題 at を実数とするとき, 座標平面において, x2 + y2-4-t (2x+2y-a) =0で定 される図形 C を考える。 (1) すべてのtに対してCが円であるようなαの範囲を求めよ。 ただし,点は円とみ なさないものとする。 (2) α = 4 とする。 tがt>0の範囲を動くとき, Cが通過してできる領域を求め、 せよ。 (3) α = 6 とする。 t が t>0であって, かつCが円であるような範囲を動くとき,C 通過してできる領域を求め, 図示せよ。 「解答例 (1) C:x2+y2-4-t (2x+2y-α) = 0より, (xt)+(y_t)2=2t2-at +4... ① [2006] ① 円を表す条件 2t2 at +4>0が, すべてのtに対して成立するためには, D=α2-32<0, -4√2 <a<4√2 (2) a=4のとき,C:x2+y2-4-t (2x+2y-4)=0.② tt>0の範囲を動くとき, Cが通過する領域は②をtの方程式としてみたと t>0の解をもつ条件として表される。 まず, 2x+2y-4=0 ③ のとき, t>0 の解をもつのは,x2+y-40..... の場合だけである。ここで,③④を連立することにより(x, y) = (2,0), (0, となり,Cはこの点を通過する。 x2+y2-4 次に, 2x+2y-4≠0のときは,t= となり, 2 2x+2y-4 2 x² + y²-4 >0, (x2+y2-4) (x+y-2)>0 2x+2y-4 -2 0 よって, C が通過する領域は右図の網点部となる。 ただし, 点(20) (02) 以外の境界は含まない。 - 2

解決済み 回答数: 2
数学 高校生

169.2 この問題は最大値を取る時がt=2で、 相加相乗平均で等号が成り立つ場合だったので 2^x=2^-xよりx=0とわかりますが、 最大値を取る時の値がt=2以外だと正直xの値はわかりませんよね。この問題は最大値をとるときのxの値を聞いていないので、すぐにxがわからな... 続きを読む

主意。 不等号の向きが変 2 てから 200 こは1より大きい -(2x+2)<- ってく >であるから 下号の向 基本例題 169 指数関数の最大・最小 (1) 関数 y=4x+1-2+2+2(x≦2) の最大値と最小値を求めよ。 (2) 関数 y=6(2*+2-x)-2(4'+4*) について, 2^2x=tとおくとき,yをtを 用いて表せ。また,yの最大値を求めよ。 基本 167 指針(1) おき換えを利用。 2*=t とおくと,yはtの2次式になるから 2次式は基本形α(t-p)+αに直す で解決! (1) 2=t とおくとt>0 x≦2であるから0<t≦22 ! したがって 0<t≤4 ...... **** @ 1 +8 7²+0 (1) yをtの式で表すと なお, 変数のおき換えは、「そのとりうる値の範囲に要注意。 (2) まず, X2+Y2=(X+Y)'-2X Y を利用して 4* +4 x をtで表す。 yをtで表すと,t の2次式になる。 なお、 t=2* + 2x の範囲を調べるには, 2*> 0, 2006 1 2>0 に対し,積 2*•2-x=1 (一定) であるから、(相加平均)≧ (相乗平均) が利用できる。 v=4(2x)2-4・2x+2=4t²-4t+2=4t- 1 (1) log 81-10 ①の範囲において, y は t=4で最大, t= 2 t=4のとき 2x=4 ゆえに t=1/2のとき ゆえに VOT (2) よって x=2のとき最大値50, x=-1のとき最小値1 (2) 4*+4x=(2x)^+(2-x)=(2x+2-x)-2・2*・2-x=t-2 したがって v=6t-2(t2-2)=-2t2+6t+4 ① 2020 であるから, (相加平均)≧ (相乗平均) より .... (2) (*)2x+2x≧2√2x•2 x = 2 すなわち ≧2 ここで,等号は 2 = 2*, すなわち x=-x から x=0のとき成り立つ。 ①から \2 y=-2 (1-3)² + 1/7 2 ② の範囲において,yはt=2のと き最大値8をとる。 したがってx=0のとき最大値 8 練習 ③ 169 = 2 = 4( + - +/- ) ² + 1 2 2x= 1 で最小となる。 x=2 x=-1 17 2 8- 4 I 1 1 10 32 2 Mgold="gol (1) 次の関数の最大値と最小値を求めよ。 な y=(24) (-1≦x≦2) psq 2 ≤29 d.gol il 120 140 YA O O O 50 344101 12 0 2*•2x=2°=1 4 a+b 2 (12/1) t 相加平均と相乗平均の関係 a> 0, b>0のとき -=√ab (等号はa=bのとき成り 立つ。) (イ)y=4x-2x+2 (-1≦x≦3) 6 boll (2)a>0,a=1 とする。 関数y=a2x+α-2x-2ax+α-x)+2について、 h? t=2 となるのは, (*)で等 号が成り立つときである。 265 大阪産大] をtを用いて表し,yの最小値を求めよ。(p.272 EX108, 5章 29 指数 相数関数

解決済み 回答数: 1
数学 高校生

tの範囲を求める時に0≦θ<2πだから2πは含まないから、tの範囲は-1<t≦1で-1は含まないと思ったんですがなぜ含むのですか?分かりやすく解説お願いします!

例題 146 三角関数の最大 最小 (1) ・・・ おき換え 基本 関数 y=4sind-Acos0+1 (0≦0<2ヶ)の最大値と最小値を求めよ 20070 のときの日の値を求めよ。 指針 ① 複数の種類の三角関数を含む式は,まず1種類の三角関数で表す。 かくれた条件 sin'0+cos'0=1 を用いて, y を cose だけの式で表すと、りは 878-1-626) についての2次関数となる。 ② 処理しやすいように, cose を tでおき換える。このとき,tの変域に注意! ③ t の2次関数の最大最小問題 (-1≦t≦1) となるから, 後は に従って処理する。 ⑩ 2次式は基本形に直す CHART 三角関数の式の扱い y=4sin²0-4cos0+1 = 4(1-cos²0)-4 cos 0+1 0-1-nie-0³ai-s =-4 cos²0-4 cos 0+50=(1+0nie S)(1-0 niz) YA =-4 (t+1/2)² + 6 ① の範囲において,yは cos0=tとおくと, 0≦0<2のとき -1≤t≤1 ① yをtの式で表すと y=-4t²-4t+5 -- 1/23 で最大値6, ● t=· t=1で最小値-3 をとる。 0≦0 <2πであるから 1種類で表す sin cos の変身自在に sin²0+c06 > t=- 1/12 となるのは,COSO- 最大 6 -3 15 10 2 1 ■最小 2006-8-200 S (1-2005)(8-0800) 11/13から から0=- t=1となるのは, cos0=1から 4 したがって 2012/31 12/31のとき最大値6; 0=0のとき最小値-3 1 2 = ²/3-t, ・π, 4 3 基本 145 基本 t π | sin20+ cos20=1 cosだけで表す。 tの変域に要注意! 4-4t²-4t+5 =-4f+t+ == T 0=0 HAT 0<1-08-1 1 12

解決済み 回答数: 1
1/6