数学
高校生
解決済み

169.2
この問題は最大値を取る時がt=2で、
相加相乗平均で等号が成り立つ場合だったので
2^x=2^-xよりx=0とわかりますが、
最大値を取る時の値がt=2以外だと正直xの値はわかりませんよね。この問題は最大値をとるときのxの値を聞いていないので、すぐにxがわからない時は最大値だけを答えればいいんでしょうか?それとも最大値を聞かれている時はその時のxの値も答えるのが鉄則で、xも求められるようになっているのでしょうか?

主意。 不等号の向きが変 2 てから 200 こは1より大きい -(2x+2)<- ってく >であるから 下号の向 基本例題 169 指数関数の最大・最小 (1) 関数 y=4x+1-2+2+2(x≦2) の最大値と最小値を求めよ。 (2) 関数 y=6(2*+2-x)-2(4'+4*) について, 2^2x=tとおくとき,yをtを 用いて表せ。また,yの最大値を求めよ。 基本 167 指針(1) おき換えを利用。 2*=t とおくと,yはtの2次式になるから 2次式は基本形α(t-p)+αに直す で解決! (1) 2=t とおくとt>0 x≦2であるから0<t≦22 ! したがって 0<t≤4 ...... **** @ 1 +8 7²+0 (1) yをtの式で表すと なお, 変数のおき換えは、「そのとりうる値の範囲に要注意。 (2) まず, X2+Y2=(X+Y)'-2X Y を利用して 4* +4 x をtで表す。 yをtで表すと,t の2次式になる。 なお、 t=2* + 2x の範囲を調べるには, 2*> 0, 2006 1 2>0 に対し,積 2*•2-x=1 (一定) であるから、(相加平均)≧ (相乗平均) が利用できる。 v=4(2x)2-4・2x+2=4t²-4t+2=4t- 1 (1) log 81-10 ①の範囲において, y は t=4で最大, t= 2 t=4のとき 2x=4 ゆえに t=1/2のとき ゆえに VOT (2) よって x=2のとき最大値50, x=-1のとき最小値1 (2) 4*+4x=(2x)^+(2-x)=(2x+2-x)-2・2*・2-x=t-2 したがって v=6t-2(t2-2)=-2t2+6t+4 ① 2020 であるから, (相加平均)≧ (相乗平均) より .... (2) (*)2x+2x≧2√2x•2 x = 2 すなわち ≧2 ここで,等号は 2 = 2*, すなわち x=-x から x=0のとき成り立つ。 ①から \2 y=-2 (1-3)² + 1/7 2 ② の範囲において,yはt=2のと き最大値8をとる。 したがってx=0のとき最大値 8 練習 ③ 169 = 2 = 4( + - +/- ) ² + 1 2 2x= 1 で最小となる。 x=2 x=-1 17 2 8- 4 I 1 1 10 32 2 Mgold="gol (1) 次の関数の最大値と最小値を求めよ。 な y=(24) (-1≦x≦2) psq 2 ≤29 d.gol il 120 140 YA O O O 50 344101 12 0 2*•2x=2°=1 4 a+b 2 (12/1) t 相加平均と相乗平均の関係 a> 0, b>0のとき -=√ab (等号はa=bのとき成り 立つ。) (イ)y=4x-2x+2 (-1≦x≦3) 6 boll (2)a>0,a=1 とする。 関数y=a2x+α-2x-2ax+α-x)+2について、 h? t=2 となるのは, (*)で等 号が成り立つときである。 265 大阪産大] をtを用いて表し,yの最小値を求めよ。(p.272 EX108, 5章 29 指数 相数関数

回答

✨ ベストアンサー ✨

すぐにxがわからないような場合の問題はおそらくxを求めよと問われることは少ないでしょう。それでもxの値を書いておかないと不安であれば書いておくのが一番いいと思います。

sin theta

ちなみにこの問題であれば,2以上の実数tに対して必ずそれを与える
xは存在するので,2でなくても無理やり出そうとすればできます。

Hi(受験生)

今回はxについて求めよ、とは書かれていないので書いていなくても減点はないのでしょうか?

sin theta

されないと思います。ただ模試だとこのあたりはうるさそうなのでその場合は書かないといけないかもしれません。

Hi(受験生)

ありがとうございます!

この回答にコメントする
疑問は解決しましたか?