数学
高校生
解決済み

tの範囲を求める時に0≦θ<2πだから2πは含まないから、tの範囲は-1<t≦1で-1は含まないと思ったんですがなぜ含むのですか?分かりやすく解説お願いします!

例題 146 三角関数の最大 最小 (1) ・・・ おき換え 基本 関数 y=4sind-Acos0+1 (0≦0<2ヶ)の最大値と最小値を求めよ 20070 のときの日の値を求めよ。 指針 ① 複数の種類の三角関数を含む式は,まず1種類の三角関数で表す。 かくれた条件 sin'0+cos'0=1 を用いて, y を cose だけの式で表すと、りは 878-1-626) についての2次関数となる。 ② 処理しやすいように, cose を tでおき換える。このとき,tの変域に注意! ③ t の2次関数の最大最小問題 (-1≦t≦1) となるから, 後は に従って処理する。 ⑩ 2次式は基本形に直す CHART 三角関数の式の扱い y=4sin²0-4cos0+1 = 4(1-cos²0)-4 cos 0+1 0-1-nie-0³ai-s =-4 cos²0-4 cos 0+50=(1+0nie S)(1-0 niz) YA =-4 (t+1/2)² + 6 ① の範囲において,yは cos0=tとおくと, 0≦0<2のとき -1≤t≤1 ① yをtの式で表すと y=-4t²-4t+5 -- 1/23 で最大値6, ● t=· t=1で最小値-3 をとる。 0≦0 <2πであるから 1種類で表す sin cos の変身自在に sin²0+c06 > t=- 1/12 となるのは,COSO- 最大 6 -3 15 10 2 1 ■最小 2006-8-200 S (1-2005)(8-0800) 11/13から から0=- t=1となるのは, cos0=1から 4 したがって 2012/31 12/31のとき最大値6; 0=0のとき最小値-3 1 2 = ²/3-t, ・π, 4 3 基本 145 基本 t π | sin20+ cos20=1 cosだけで表す。 tの変域に要注意! 4-4t²-4t+5 =-4f+t+ == T 0=0 HAT 0<1-08-1 1 12
三角関数の最大最小

回答

✨ ベストアンサー ✨

0≦θ<2πということは、定義域は単位円1周分ですよね。
ですので、そのときt(=cosθ)がとりうる値の範囲は、-1≦t≦1となります。

のりたま

一周分と換算するんですね!!わかりました!ありがとうございます🙇‍♀️

この回答にコメントする
疑問は解決しましたか?

この質問を見ている人は
こちらの質問も見ています😉