学年

教科

質問の種類

数学 高校生

この問題のクの部分の解説なんですが 総利益なのに費用分を引いてない気がするんですが いいんですか? すいません、メモ多くて見にくくて💦

[1] あるスーパーマーケットが自社製の総菜Sを期間限 定で販売することにした。 今日の総菜 総菜Sの1個あたりの価格を円とすると,x個売 れたときの売り上げ金額はkx円である。 総菜Sを1個作るのにかかる費用は50円であり, 売り上げ金額から作った個数分の費用を引いたものを 利益とする。 ここでは、人件費などは考えないものと し、作った総菜Sはその日のうちにすべて売れるもの とする。 (450- )x-50x (1)1日限定で総菜S を販売する。 2 x2+450x50x=-x+4000 x個の総菜Sを作り, 1個あたりの価格を (450-x) 円 (0<x<400) す ると, 売り上げ金額は ア 利益は イ 円である。また,利益が最 大となるのはx= ウエオ のときである。 x2+400x =-x(x-400) 200 (水(+200)2+4000 ア イ の解答群(同じものを繰り返し選んでもよい。) &= -x2+350x ①① -x2+400x ② -x2+450x ③ x2+500x (2) 総菜Sの販売期間を2日間とし,この2日間における利益の合計を総利益と する。また、1日目はx1個, 2日目は x2 個の総菜 S を作るものとする。 このと き,総菜Sの価格設定について,次の二つのプランを考えた。 プラン A 1日目 2日目ともに1個あたりの価格を (450-x1x2)円 (x10, x2 >Q, x1 + x2 <400) とする。 プランB:1日目の1個あたりの価格を (4x】) 円 (0x400) とし, xは1日目の利益が最大となるように定める。 そのように定め xに対して, 2日目の1個あたりの価格を (450x-x2) 円 ( x2≧0, x+x2 <400) とする。 ジに続く (数学Ⅰ 数学A第2問は次ページに続く。) - 16-

解決済み 回答数: 1
数学 高校生

友達がこの問題できる?ってドヤ顔で言ってきてウザいのでどなたか教えてください。高校数学の確率です。

2 単位がなくたって... 浜駅の 「起学を落として傷心いたKくん イルミネーションがトンネルみたいになってる場所で 行き交うカップルを眺めながら んな 慰めて くれる恋人がいたなら、 なんて少しも怖くないのに と考えていました。 そこで彼は一念発起 オシャレな服を大量に 現代の素晴らしい技術で骨格から整形しても 恋愛指南書に日夜読み耽りました。 その甲斐あってか、以前とは見違えるように魅力的に なった彼 (2) クリスマスまではあと1か月ですが、 今まで羨望の眼差しを向けることしかできなかった タソリア充に、果たしてKくん改めKくんはなれるの でしょうか? (1)1 1) 11/24(土)から12/24(月)までの1か月間、彼には毎日 の 平で彼女ができます。ただし、女性ウケと違い 趣味やが災いして、彼女ができた翌日から毎日 確率でフラれてしまいます。 10 さて、彼が僕の仲間クリぼっちになる確率は何%でしょう? 数でお答えください。 [K] なお、彼はゲスくないため、 二段はかけないものと します。 また、 彼はガラスのハートの持ち主であるため、 一度フラれた後は家のコタツに引き籠もっ お正月まで出てきません。そのため、元カノとよりを したり、新たな彼女ができる可能性は0%です。 てしまい、

解決済み 回答数: 1
数学 高校生

(1)〜(3)教えてください🙇‍♀️ 早めにお願いします。

例題 133 次のデータは、生徒20人のある1日のテレビ や動画サイトなどのメディアの視聴時間を調べ たものである。 p.150 M4 208 次のデータは、 ある都市の9月の最高気温 を日付順に並べたものである。 ある都市の9月の最高気温 (°C) 35 32 27 25 26 27 30 29 29 31 視聴時間 (分) 31 27 30 27 30 28 26 29 26 29 90 120 70 110 90 160 50 220 100 320 40 240 210 30 200 120 80 120 60 170 (1)このデータについて, 平均値を求めなさい。 34 30 25 25 27 28 27 24 22 24 (1) このデータについて, 平均値を求めなさい。 (2)このデータについて, 中央値を求めなさい。 (3)このデータについて、 最頻値を求めなさい。 Point 平均値: データの値の合計をデータの値の個 数で割った値。 中央値: データの値を小さい順に並べたとき, 中央にある値。 ただし, データの値の個数が 偶数のときは,中央にある2つの値の平均値 を中央値とする。 最頻値: データの中で最も多く出てくる値。 度 数分布表から求める場合は, 度数の最も大き い階級の階級値。 (2)このデータについて, 中央値を求めなさい。 解 (1) 平均値は 90 + 120 + 70 + ・・・ + 120 +60 + 170 20 2600 20 130(分) (2) データの値を小さい順に並べると 30 40 50 60 70 80 90 90 100 110 120 120 120 160 170 200 210 220 240 320 中央値は, 10 番目の値と11番目の値の平均 値であるから 110+120 2 115(分) (3) データの中で最も多く出てくる値は 120 で あるから,最頻値は120分である。 (3)このデータについて、最頻値を求めなさい。

回答募集中 回答数: 0
1/64