学年

教科

質問の種類

数学 高校生

数2の質問です! (2)でなぜ23は答えにならないのかを 分かりやすく教えてほしいです!! よろしくおねがいします🙇🏻‍♀️՞

log102=0.3010, 10g103=0. (1) 232 は何桁の整数か。 (2)3”が12桁の整数となる自然数nの値をすべて求めよ。 50 (3) (2) は小数第何位に初めて0でない数字が現れるか。 CHART & SOLUTION 整数の桁数, 小数首位 常用対数の値を利用 (1) Nが桁の整数 - →10-1≦N<10"⇔n-1≦10g 10N <n logo2=0.3010 を用いて, 10g10232 の値を求める。 20 10'≦3"<1012⇔ 11≦nlog103 <12 (2)3" が 12桁の整数 (3) Nの小数首位がn位 ->> ≤ 10" 10" ≤N<--n≤log₁N<−n+1 2\50 -n≤log10 <-n+1 を満たす自然数n を求める。 3 解答 244 基本事項 5 (1)10g10232=3210g102=32×0.3010=9.632 常用対数の値を求める。 よって 9<log10 232 <10 ゆえに 10°2321010 ←log1010° <logio232 したがって, 232 は10桁の整数である。 <log 101010 (2)3" が 12桁の整数であるとき 101131012 tl よって 11≦nlog103 <12 各辺の常用対数をとる。 大 ゆえに 11≦0.4771xn<12 logx23 ゴールド 11 12 よって ≤n<- 0.4771 0.4771 ◆各辺を 0.4771 (=10g103) で割る。 すなわち 23.0...≦x<25.1・・・ nは自然数であるから n=24,25 吟味。nは自然観 (3)10g10 (2) O 2\50 2 =50 log 10 = =50(10g10 2-10g103) 常用対数の値を求める。 =50×(0.3010-0.4771)=-8.805 50 23 よって ゆえに -9<log10(-8 2\50 10-9<(2)°<10-8 したがって, 小数第9位に初めて0でない数字が現れる。 log10 10-<logi <logio10 sarpe isar 70-3)-

解決済み 回答数: 1
1/9