学年

教科

質問の種類

数学 高校生

ここにマイナスがつかないのはなぜですか?

177 確率密度関数 連続型確率変数Xのとり得る値xの範囲が s≦x≦t で,確率 密度関数 f(x) のとき,Xの平均E (X) は次の式で与えられる. E(X)=√xf(x)dx αを正の実数とする. 連続型確率変数Xのとり得る値xの範 囲が -a≦x≦2α で, 確率密度関数が 2 (x+a) (-a≦x≦0 のとき) se f(x)= であるとする. 3a2 1 3az(2a-x)(0≦x≦2a のとき) (1)Xが4以上 12024以下の範囲にある確率 P(a≦x≦2/20) を求 (2) Xの平均E (X) を求めよ. (3) Y=2X+7 のとき,Yの平均E (Y) を求めよ. 精講 これまでは,ものの個数や起こった回数などのように, 確率変数が とびとびの値をとるものだけを扱ってきました. この確率変数を離 散型確率変数といいます. これに対して, 人の身長,物の重さ, 待 ち時間などのように, 連続的な値をとる確率変数を連続型確率変数といいます. 連続型確率変数X が α以上 6以下の範囲にある確率P(a≦x≦b)は, P(a≦x≦b)=f(x)dx 確率を図の斜線部分の面積として表す で表されます.すなわち, 確率 P(a≦X ≦ b) は, y 曲線 y=f(x), x軸, 直線 x=a,x=b P(a≤x≤b) で囲まれた部分の面積で表されます. y=f(x) ここで関数 f(x) は f(x)≥0 【確率は負になることはないので f(x) <0 になることはない であり,Xのとり得る値の全範囲が α≦x≦ß a b I たし この 分散 | 偏差 考

解決済み 回答数: 1
数学 高校生

解答のグラフ、X軸との交点が分かったあと、曲線の上下関係?はどうやって分かるんですか?🙇‍♂️

338 基本 例題 215 3次関数のグラン 0 関数 y=2x-x²-2x+1 のグラフとx軸で囲まれた部分の面積を求めよ。 CHART & SOLUTION 面積の計算 まずグラフをかく ① 積分区間の決定 ② 上下関係を調べる 基本21 3次関数のグラフと面積の問題でも、方針は2次関数の場合と変わらない。 3次関数のグラフとx軸の交点のx座標を求めて、積分区間を決める。 解答 ・交点のx座標は2x-x²-2x+1=0 の解。 面積を求めるために解答にグラフをかくときは, 曲線とx軸との上下関係と、交点の x座標がわかる程度でよいから、微分して増減を調べる必要はない。 曲線 y=2x3x²-2x+1とx軸の交点のx座標は, 方程式 2x-x²-2x+1 = 0 の解である。 よって f(x)=2x-x²-2x+1 とすると _f(1)=2-1-2+1=0 f(x)=(x-1)(2x²+x-1) =(x-1)(x+1)(2x-1) YA f(x)=0 を解いて x=1, -1, 1/12 ゆえに、曲線は右の図のようになるか ら, 求める面積Sは S=(2x-x-2x+1)dx +f{(2x-x²-2x+1)}dx 「x4x3 x2+x x3 2 3 x²+x 3 [12 10 =21/12(12)/(2)-(12)+/12(12/+/1/3-2)-(12/1/3) 71 48 (*) 1 x ← 因数定理 組立除法により 2-1-2 11 2 2 1-1 1-1 あるいは f(x)=x2(2x-1)-(2x-1 =(2x-1)(x²-1) =(2x-1)(x+1)(x-】 としてもよい。 2つ目の定積分は 外に出すと、1つ目の 積分と被積分関数が じ。 ← [F(x)]-[F(x)" (F(6)-F

解決済み 回答数: 1
1/15