学年

教科

質問の種類

数学 高校生

ヨウ化水素の物質量の変化の図示が分かりません

基本例題34 電離定数 0.030mol/Lの酢酸水溶液の酢酸の電離度α および水素イオン濃度を求めよ。ただし、 酢酸の電離定数を2.7×10mol/L,αは1に比べて非常に小さいものとする ■解答 188 【mol/L] の酢酸水溶液において、 酢酸の電離度がαのとき、電離す る酢酸分子は co[mol/L] なので, 生じる酢酸イオン、水素イオンも ca[mol/L] となる。 電離平衡時の 量的関係を調べ, 電離定数K の 式に代入してc, α と K の関係 式をつくり、 αを求める。 このと き、実際にαが1に比べて非常に 小さいことを確認する。 目安は α<0.05程度である。 はじめ 平衡時 0 ca (mo < 1 であり, 1-α=1 とみなされるので, 電離定数は。 ように表される。 CH₂COOH CH3COO- +H* a = √ したがって, C c(1-a) [CH3COO-] [H+] Lah Jo Ka= [CH3COOH] 2.7×10-5 0.030 [知識] グラフ 323. 平衡状態と平衡定数水素1.00mol とヨウ 素1.40molを100Lの容器に入れ、 ある温度に保 った。このときの水素の物質量の変化は、図のよ うであった。 (1) 平衡状態における水素, ヨウ素およびヨウ 化水素のモル濃度を求めよ。 (2) 減少するヨウ素および生成するヨウ化水素 の物質量の変化を図示せよ。 (3) この反応の平衡定数を求めよ。 HOKUESE [H+]=ca=0.030mol/L×0.030=9.0×10mol/L. $5 (1) 3 Tom T. &IH (8) IH A |基本|問題| 119 つ選べ。 (ア) N2O4 と NO2 の濃度の比は1:2である。 (イ) N2O4 と NO2 の圧力(分圧)の比は1:2である。 (ウ) N2O4 の濃度は一定となっている。 (エ) 正反応と逆反応の速さは等しい。 (オ) 正反応も逆反応もおこらず、反応が停止している。 2NO2 の反応 [知識 322. 平衡状態四酸化二窒素 N2O4 をある温度, 圧力に保つと, N2O4 がおこり,平衡状態に達した。 平衡状態に関する次の記述のうちから,正しいものを [mol] 2.0 物質量 ca 1.5 (ca)² c(1-a) =0.030 SCIEN 49 kieuốc (S)(ung Fossh — (R),H&+ (2);M (1) SUL (1) HOOSH+HOOT,HO (1) MOOOHO (SE 1.0 =ca² 0.5 0 324. 平衡の量的関係 一定温度で平衡状態 CHICOOH +c 酢酸 H この温度にお 酢酸1.00mc で平衡状態に達 時間 - 例題 F (1) (2) 325. 反応量と解 入れると、二酸 をP[Pa], 四 N2O4 (気) 平衡状態 平衡時⊂ この反 (1) (2) (3) [知識] 326. 条件変 よって,平 (1) 302 N2+ 2HI (4) 2SC (5) NH (2) (3) 327. 平 Im 2SO (1) SC の (2

回答募集中 回答数: 0
数学 高校生

20の(1)の角BACを求めるところで質問です 解答とはちょっと違くて β-α/γ-α=√2/2(cos5/4π+isin5/4π)となったのですが極形式のθ回転は右回りを指しているのでこのようになりますか? そういうことなら問題を解く時、点の位置をある程度把握する必要... 続きを読む

58 基本例題 30 線分のなす角、平行・垂直条件 複素数平面上の3点A(α), B(B), C(y) について (1) α=1+2i,β=-2+4i, y=2-ai とする。 このとき, 次のものを (ア) a=3のとき, ∠BAC の大きさと △ABCの面積 (イ) α=16のとき, CBA の大きさ (2) α=-1-i, β=i, y=b-2i (b は実数の定数) とする。 (ア) 3 点A,B,Cが一直線上にあるように, bの値を定めよ。 (イ)2 直線 AB, AC が垂直であるように, 6の値を定めよ。 指針 ∠BACの偏角 Bay = arg B-α Y-α (1)(ア) (1) B-a (ア) △ABCの面積は 1/12AB・ACsin <BAC また であるから, a-B Y-B = r-a β-a r-a に注目する。 = を計算し、 極形式で表す。 (2) pp.41 の基本事項 ③ ② ③ が適用できるように,まずy-a B-a r-a が実数 (∠BAC = 0 または ² ) B-α 解答 (1) (ア) α=3のとき, y=2-3i であるから Y-α 2-3i-(1+2i) B-a -2+4i-(1+2i) よって, ∠BACの大きさは r-a が純虚数 ∠BAC= B-a BAC=4) の計算で出てくる B-α, r-αの値を使うとよい。 (1-5i)(-3-2i) (-3+2i)(-3-2i) = √2 (cos+isin) CHART 線分のなす角、直線の平行・垂直偏角 ∠Bay=arg- 1-5i -3+2i =-1+i 3 △ABC=12AB・ACsin <BAC -—-—- √ √(-3)² + 2² ₁/18 11 12 B(B) p.41 3 0 A(a) ここで, AB=B-al, AC ∠Bay A(a) C(y) を計算し Big r-a B-a a-B r-B a=16 のとき, -ba 分母の実数化。 偏角を調べる。 = よって, ∠CBA y-a (b-2i)- B-a as litte i-(- (b+1-i (1+2i) 3点A, B, C となることであ よって イ) 2直線AB, 検討 ベクトルの となるように,bの値を定復素数平面上の点 いて解くこともで 1) (1) A(1, 2), B. 1+2i-( 2-16i-C = ここでは,偏角 (3-2i)(- 4(1-5i)0 習 00 √ 8 COS- 数となることで b= よって b=- CO (ア)についても 2) A(-1, -1) (ア)kを実数 よって (イ) AB・AC= 0≤ZCBAS 複素数平 (1)a= (2) α= 求め

回答募集中 回答数: 0
数学 高校生

【データの分析】 セとソはどうやって求めますか?解説見てもよく分からないのでよろしくお願いします🙇‍♂️

〔2〕 太郎さんと花子さんと健太さんと明子さんの四人は、先日クラスで行 た10点満点の英語と数学の小テストの結果について話している。次の表 四人の小テストの結果をまとめたものである。 英数 語学 英語 数学 太郎 8 8 サ 花子 7 10 0 - 2.00 ④ 0.25 (1) 四人の英語の点数の平均値は の数学の点数の平均値は8で, 分散は 太 6 6 ① -1.00 ⑤ 0.50 コ 明子 7 8 で, 分散は である。 の解答群 (同じものを繰り返し選んでもよい。) 0. 0.50 1.00 である。四人 -0.25 2.00 (数学Ⅰ・数学A 第2問は次ページに続く。) (2) 太郎 : 四人のデータの平均値と分散についてはわかったね。 花子: ここから共分散を求めて, 英語と数学の相関係数を計算すると になるよ。 明子 : 相関係数は, データの組が直線に沿って分布する程度を表す値だ ね。 健太 : だから,データが2組しかない場合の相関係数は散布図を見ると すぐにわかるよ。 花子: そうだね。 例えば, 太郎さんと私の二人の英語と数学の相関係数 は t 健太さんと明子さんの二人の英語と数学の相関係数 ス ス は ソ であることがわかるね。 太郎 : データが3組になっても,相関係数が正なのか負なのかくらいは わかるかな。 明子 : 四人のうち三人のデータで散布図をかくと, 英語と数学の相関係 数が負になりそうなのは1組だけだよ。 - 2.00 0.50 , ソ 第3回 実戦問題 第2問 の解答群 (同じものを繰り返し選んでもよい。) - 1.50 1.00 ② -1.00 (3) - 0.50 ⑦ 1.50 (8) 2.00 0 (数学Ⅰ・数学A 第2問は次ページに続く。) 第 3 回 「実戦問題

回答募集中 回答数: 0
1/7