学年

教科

質問の種類

数学 高校生

赤線で囲った部分は要するに何を言ってるんですか? それと、赤線で囲ったところの上の式変形、どういう思考回路で出てくるんですか?

た接線 基本 次の曲線上の点P, Q における接線の方程式をそれぞれ求めよ。 x2 田線の接線 q² + y² (②2) 曲線x=et, y=et のt=1に対応する点 Q ttel, a>0, b>0 基本 81 める。 7/2 20 ((1) 楕円 指針 「解答」 (1) 両辺をxで微分し,y'′ を求める。 -=1上の点P(x1, y1) 62 2²2 +22²2 62 接線の傾き=微分係数 まず, 接線の傾きを求める。 dy dt dy dx dx dt y-Vi=- よって =1の両辺をxについて微分すると 2x 2y ゆえに,y=0のときy= 62x a² 62 a'y よって,点Pにおける接線の方程式は,y≠0 のとき 62x1 a²y₁ 点Pは楕円上の点であるから (2) th + •y'=0 dy dx = (2) dy dt dx dt X1X (x-x1) すなわち 2 a² 62 a² 62 y=0のとき, 接線の方程式は y=0のとき, x1 = ±α であり, 接線の方程式は これは ① で x = ±α, y=0 とすると得られる。 したがって 求める接線の方程式は (2) dx = e², dy = =et, dy=e-t²(-2t)=-2te-t² dt dt -2te-t² et + = + X₁² y₁² 2 q² 62 2 yiy x₁² y₁² + =1 X1X Viy 2 62 + t=1のとき de, 1/2) = -2/2 Q(e, dy == dx e² したがって 求める接線の方程式は -=1 [(2) 類 東京理科大 ] /p.142 基本事項 2. 基本 81 x1x yiy a² =-2te-t²-t + =1 62 を利用。 1 x=±α 2 ext y-1---²/(x-e) tah5 y=- すなわち 3 陰関数の導関数につい ては, p.136 を参照。 ただし, a>0 5 両辺に12/12 を掛ける。 傾き b²x₁ a²y₁ -a x=-a yA 3e10 | 次の曲線上の点P, Q における接線の方程式をそれぞれ求めよ。 83 _ (1) 双曲線x2-y2 = d² 上の点P(x1, y1) 0 2 YA b p.137 参照。 2539 O -b P(x1,y1) a x=a -y=-2²/x+³ Q(t=1) 153 EY70 4章 2接線と法線

回答募集中 回答数: 0
数学 高校生

矢印部分の変形が分かりません。

402 重要 例題 44 ベクトルと軌跡 WALET EN 平面上の△ABC は BA•CA=0 を満たしている。 この平面上の点Pが条 件 AP・BP +BP・CP+CP ・AP=0 を満たすとき, Pはどのような図形上の [ 岡山理科大〕 点であるか。 LUTION △ABC の問題 Aを始点とする位置ベクトルで表す ・・・・... 条件式の中の各ベクトルを, Aを始点として, ベクトルの差に分割して整理する。 ベクトル方程式に帰着できないかと考える。 解答 BA・CA=0 から、△ABCは∠A=90°の直角三角形である。 | BAICA AB=1, AC=C, AP= とすると、条件の等式から Þ· (p−b) + (p−b) · (p—c) + (p—c)• p=0 6-c=0 BA・CA = 0 から |B³² − b •p+|B³²− c •p-b•p+|p|²-c•p=0 35²-2(6+c) p=0 よって 整理すると ゆえに よって 1/23(+2)+(1/16+c)=(1/315+)2 ・+1 ゆえに |õ— — ² (6 + c)² = | b + c ³² |b³−²3 (b+c)•b=0 辺BCの中点をM, AM = m とすると cc = 2mを①に代入すると m= よって 基本41 b+c 2 Aを始点とする位置べ クトルで表す。 AB・AC=0 EXERO A 35 ③ 12=800-A01.24 ◆2次式の平方完成と同 様に変形する。 Mも定点である。 YUEGO inf. Giả AABCOLL →0である。AD |p-²m-²3m AG=12/23 m とすると,Gは線分 AM を 2:1に内分する点で ある。 したがって,点Pは△ABCの重心Gを中心とし、半径が 50+A Gc AG の円周上の点である。 # NBA MSC 14P 10+ÃO)1+ÃO²-ATO (S) 3873 P=0 31

回答募集中 回答数: 0
1/10