学年

教科

質問の種類

数学 高校生

解の吟味がよくわかりません

0000 をもつよう 実数解をも 基本 78 基本 例題 80 2次方程式の応用 右の図のように, BC=20cm, AB=AC, ∠A=90° の三角形ABC がある。 辺 AB, AC上に AD=AE となるように2点D, E をとり, D, E から辺BCに 垂線を引き、 その交点をそれぞれF,Gとする。 MOT 長方形 DFGE の面積が20cm² となるとき, 辺 FG の長さを求めよ。 CHART & SOLUTION 方程式) 文章題の解法 D A E B F G 20cm 基本 66 135 等しい関係の式で表しやすいように, 変数を選ぶ ②解が問題の条件に適するかどうかを吟味 FG=x として, 長方形 DFGEの面積をxで表す。 そして、面積の式を=20 とおいた 共 xの2次方程式を解く。最後に,求めたxの値が,xのとりうる値の条件を満たすかどうか 忘れずに確認する。 3章 9 2次方程式 (-5)(-5)=0 J0 から, 解答 を利用する。 FG=x とすると, 0 <FG <BC であるから 0<x<20 ① ← 定義域 また, DFBFCG であるから D E ≥-7 2DF=BC-FG joc & ∠B=∠C=45° であるか ら,△BDF, ACEGも直 B F x G C 角二等辺三角形 20-x m よって DF= 2 長方形 DFGE の面積は DF・FG=- 20-x. ・x 2 $10 S=D. [S] 540 のは, き。 ゆえに 20-x 21 x=20 整理すると 解をも これを解いて x2-20x+40=0 x=-(-10)±√(-10)²-1.4026 102/15 xxの係数が偶数 ここで, 02/158 から 解の吟味。 10-8<10-2/15 <20, 2<10+2/15 <10+8 よって、この解はいずれも ①を満たす。 ①①左目立 したがって 02√15=√60<√64=8 FG=10±2√15 (単位をつけ忘れないよう 新 a PRACTICE 802 BOIT 9 の の [大] 数を求めよ。 連続した3つの自然数のうち, 最小のものの平方が,他の2数の和に等しい。 この3

未解決 回答数: 0
数学 高校生

黄チャートの問題について質問です! 解説下部の蛍光ペンで引いた部分について、なぜ2<なのか教えていただきたいです。2‪√‬15が0<x<20の範囲内にあることを証明したいのはわかりますが、なぜここが2なのかわかりません。2‪√‬15は7と8の間にあるので17、それか、前の... 続きを読む

つよう 2次方程式の応用 基本例題 80 右の図のように,BC=20cm, AB=AC, ∠A=90° の三角形ABCがある。 辺AB, AC 上に AD=AE となるように2点D, E をとり, D, E から辺BCに 垂線を引き, その交点をそれぞれF,G とする。 長方形 DFGE の面積が20cm²となるとき,辺FG の長さを求めよ。 CHART & SOLUTION 文章題の解法 等しい関係の式で表しやすいように、変数を選ぶ 解答 FG = x とすると, 0 <FG <BC であるから 0<x<20 また, DF=BF=CG であるから 2DF=BC-FG DF= 20-x 2 長方形 DFGE の面積は よって ...... 20-x 2 ② 解が問題の条件に適するかどうかを吟味 FG = x として, 長方形 DFGE の面積をxで表す。そして、面積の式を 20 とおいた, xの2次方程式を解く。 最後に, 求めたxの値が,xのとりうる値の条件を満たすかどうか 忘れずに確認する。 ゆえに 整理すると これを解いて •x=20 x2-20x+40=0 DF・FG= =10±2√15 ここで, 02√158 から B PRACTICE 902 D EF x=-(-10)±√(-10)2-1・40 よって,この解はいずれも①を満たす。 したがって FG=10±2√15 (cm) F 20-x ・x 10-8<10-2√15 <20, 2<10+2√15 <10+8 B A U=(5-3)(S-1 E D G C F E G 基本 66 定義域 會∠B=∠C=45°であるか ら, BDF, ACEG も直 角二等辺三角形。 ←解の吟味。 xの係数が偶数 → 26′型 3章 02/15=√60<√64=8 単位をつけ忘れないよう に。 9 2次方程式

回答募集中 回答数: 0
数学 高校生

129. 記述これでも大丈夫ですか??

JUL 510 OS 00000 基本例題1291次不定方程式の応用問題 3で割ると余り, 5 で割ると3余り, 7で割ると4余るような自然数nで最小の ものを求めよ。 指針▷ 基本 127,128 が共通の数。 8が最小である。 3で割ると2余る自然数は 2,5, 8, 11, 14, 17, 20, 23, 5 で割ると3余る自然数は 3, 8, 13, 18,23, よって、「3で割ると2余り, 5 で割ると3余る自然数」を小さい順に書き上げると 3と5の最小公倍数 15 ずつ大きくなる。 A8, 23, 38, 53, 68, また, 7で割ると4余る自然数は B 4, 11, 18, 25, 32, 39,46,53, A,B から、求める最小の自然数は53 であることがわかる。 このように、書き上げによって考える方法もあるが,条件を満たす数が簡単に見つからな い (相当多くの数の書き上げが必要な) 場合は非効率的である。 -110/ そこで,問題の条件を1次不定方程式に帰着させ、その解を求める方針で解いてみよう。 CTORUTSJEFE 解答 nはx,y,zを整数として,次のように表される。 注意x+2=5y+3 3)=0 S&TS 5y+3=7z+4 n=3x+2, n=5y+3, n=7z+4 小 3x+2=5y+3 から 3x-5y=1 x=2, y=1は, ① の整数解の1つであるから 3(x-2)-5(y-1) = 0 すなわち 3(x-2)=5(y-1)x 3と5は互いに素であるからんを整数として, x-2=5kと表 される。よって x=5k+2(kは整数) ② bom) 3(5k+2)+2=7z+4 ② を 3x+2=7z+4に代入して ゆえに z=-8, k=-4 は、 ③の整数解の1つであるから 7(z+8)-15(k+4)=0 すなわち 7(z+8)=15(+4) 7と15 は互いに素であるから, lを整数として,z+8=157 と 表される。 よって z=151-8 (Zは整数) (Thom) これをn=7z+4に代入して n=7(157-8)+4=1057-528 最小となる自然数nは, l=1 を代入して 53 TE bom) 85-= として解いてもよいが,係 数が小さい方が処理しやす い。 このときy=3k+1 x-7z=2から 7z-15k=4...... ③③ A+ASA-=(A+10)-06-3(x-3)−7(z−1)=0 ゆえに, Zを整数として x=7l+3 これと x=5k+2 を等置し て 5k+2=7l+3 よって5k-71=1 これより, k, lが求められ るが, 方程式を解く手間が 1つ増える。 検討 百五減算 2+(3=376)00=1+00=178 ある人の年齢を3,5,7でそれぞれ割ったときの余りをa,b,c とし, n= 70α+216+15c とす る。このnの値から 105 を繰り返し引き, 105より小さい数が得られたら、その数がその人の年 齢である。 これは 3,5, 7で割った余りからもとの数を求める和算の1つで、 百五減算と呼ばれ る。なお,この計算のようすは合同式を用いると,次のように示される。 求める数をxとすると, x=a (mod3), x=6 (mod5) x=c (mod7) であり, n=70a=1•a=a=x (mod 3), n=21b = 1.b = b = x (mod 5), n=15c=1+c=c=x (mod 7) よって, n-xは3でも5でも7でも割り切れるから, 3, 5, 7 の最小公倍数 105 で割り切れる。 ゆえに,を整数として, n-x=105k から x=n-105k このkが105を引く回数である。 TRON 練習 3で割ると2余り,5で割ると1余り, 11で割ると5余る自然数nのうち (3) 129 1000 を超えない最大のものを求めよ。 どのよう できない 3m よー 解答 mnは食 [1] n= よって, x=3m- [2] n= ここで. よって ......) [3] n= ここで よって ......) [1]~[3] 形に表す よって, したが一 (検討 次ペー しかし 然数も なお、 a

回答募集中 回答数: 0
数学 高校生

黄色でマークした所が分かりません😭 10-8と10+8、2はどこから出てきた数字なんでしょうか❓ 教えてください🙇‍♀️🙇‍♀️

基本例題 80 2次方程式の応用 右の図のように, BC=20cm, AB = AC, ∠A=90° の三角形ABCがある。 辺AB, AC 上に AD=AE となるように2点D, E をとり, D, E から辺BCに 垂線を引き, その交点をそれぞれF, G とする。 長方形 DFGE の面積が20cm² となるとき, 辺 FG の長さを求めよ。 解答 FG=xとすると, 0 <FG < BC であるから 0<x<20 T また, DF=BF=CG であるから 2DF=BC-FG DF=- 20-x 2 長方形 DFGE の面積は DF・FG= よって 20-x 2 CHART & SOLUTION 文章題の解法 ①等しい関係の式で表しやすいように, 変数を選ぶ ② 解が問題の条件に適するかどうかを吟味 SUED FG=xとして, 長方形 DFGE の面積をxで表す。 そして、 面積の式を 20 とおいた, xの2次方程式を解く。 最後に, 求めたxの値が,xのとりうる値の条件を満たすかどうか 忘れずに確認する。 ゆえに 整理すると これを解いて x=20 x2-20x+40=0 =10±2√15 ここで, 02√15 <8から D B F x=-(-10)(10)2-1.40 20-x.x 2 よって、この解はいずれも ① を満たす。 したがって FG=10±2√15 (cm) 0=(5-5)(S-1) A 10-8<10-2/15 <20, 2<10+2√15 <10+8 E D G C F ASOCS 1 G 20 1026 KE 基本 66 ← 定義域 ← ∠B=∠C=45° であるか 5, ABDF, ACEG 角二等辺三角形。 €30 - [S] IF I | → 26 HU xxの係数が偶数 ◆解の吟味。 0<2√/15=√60<√64=8 単位をつけ忘れないよう PRACTICE 80② 19 連続した3つの自然数のうち, 最小のものの平方が、他の2数の和に等しい。 この3 数を求めよ。 135 3章 9 2次方程式

未解決 回答数: 0
1/4