学年

教科

質問の種類

数学 高校生

φ-θの取りうる値の範囲はどのように決めるのでしょうか?

441 2つの円C: (x-1)2+y2=1 と D : (x+2)2+y2 = 72 を考える。 また原点を O(0,0)とする。 このとき、次の問に答えよ。 2016年度 〔2〕 Level A (1) 円 C上に,y座標が正であるような点Pをとり,x軸の正の部分と線分 OP の なす角を0とする。このとき,点Pの座標と線分 OP の長さを 0 を用いて表せ。 (2)(1)でとった点 P を固定したまま,点Qが円D上を動くとき、△OPQ の面積が 最大になるときのQの座標を0を用いて表せ。 (3) 点Pが円C上を動き, 点Qが円D上を動くとき, △OPQ の面積の最大値を求 めよ。 ただし(2),(3)においては,3点O,P,Qが同一直線上にあるときは,△OPQの 面積は0であるとする。 解法 1 イント JC上にある点P, 円 D上にある点Qを考えるのであるから, そのパラメ ータ表示には, 三角関数を用いるのが自然である。これに, 三角形の面積の公式 OE = (x1,y1), OF = (x2, y2) とするとき △OEF= ===—=—=12²₁3 -|X1Y2—X2Y1| を用いて面積を表すことができれば、あとは微分法によればよい。 本題では,2点P, Q が動くとき, 「まず1点Pを固定する」という基本的な考え方 が誘導されている。 〔解法1] では,厳密に論証を重ねながら計算を進めるが,直観的には (1), (2)の結果は ほぼ明らかである。 点Pは第1象限に限られているので, 三角比の問題として処理で きるからである。 〔解法2〕では,この方針で(1), (2) を解答する。 π (1) 円Cの中心をAとおくと, A (1, 0) である。 また,0は0<8<- の範囲にあ

回答募集中 回答数: 0
1/6