学年

教科

質問の種類

数学 高校生

微積分についての質問です。 写真一枚目、二枚目と問題、回答が続いています。その中の写真二枚目最後のDの式の変換が分かりません。 どのような経緯でその式の変換ができるのか 教えて頂きたいです💦

2つの曲線 C: y=x, D:y=x2+px+g がある. (1) C上の点P(a, α) における接線を求めよ. 2 曲線DはPを通り,DのPにおける接線はと一致するこ のとき,b,g をαで表せ. (3)(2)のとき,Dがx軸に接するようなαの値を求めよ. (2)2つの曲線 C,Dが共通の接線をもっているということです が,共通接線には次の2つの形があります。 精講 (I型) (Ⅱ型) y=f(x) y=g(x) A a y=f(x) y=g(x) 形の イメージしっかり α 違いは、接点が一致しているか,一致していないかで,この問題は接点がP で一致しているので(I型)になります. どちらの型も、接線をそれぞれ求めて傾きとり 切片がともに一致すると考え れば答をだせますが, (I型) についてはポイントの公式を覚えておいた方が よいでしょう. 解答は、この公式を知らないという前提で作ってあります。 解答 (1) y=xより,y'=3x2 だから,P(a, α) における接線は, y-a³=3a²(x-a) :.l:y=3ax-2a° ...... ア |86| (2)PはD上にあるので,a+pa+q=a° ...... ① また,y=x+px+q より y'=2x+p だから, Pにおける接線は,y-a=(2a+b)(x-a) :. 1: y=(2a+p)x+a³-2a²-pa y=(2a+p)x+q-a ・・・・・ イ ( ①より)

解決済み 回答数: 1
数学 高校生

微積分の問題で(2)についてです。Y=X^3-4X^2+4Xの極大値(2/3,32/27)をY=KXに代入して求めた傾き(K)よりも小さけ れば共有点を2個もつと考えたのですが間違っていました。どこで間違えてるのか教えてほしいです🙏🏻

微分法・積分法 3次関数のグラフ a=0, b=0のとき y=x³ y=3x で x=00 a=0, x=0のときは0となるから、Cの形はGである。 b=1のとき y=x+x Cの概形はG2 である。 AB y=3x2+1 で すべてのxについて>0となり、増加関数であるから AC a=-2.6=0のとき y=x-2x y=3x²-4x=3x(x-1) 4 3=0より x=0.1/2 0 となりの増減表は次のようになる。 XC + 0 - y' 0 1430 + 32 y 27 よって、Cの概形はGである。 A D () a=-4,6=4のとき y=x-4x2+4x y' =3x²-8x+4 = (x-2)(x-2) y=0より x= 2 3' 2 となり、yの増減表は次のようになる。 A G, G2 とも増加関数であるが、 (ア)ではC上の原点における接線 この傾きが0となるから, G. G2 のうちGが正しいグラフとな る。 B 曲線 y=f(x) 上の点(a.f (a)) における曲線の接線の傾きは f'(a) C (ア)の場合と違って、x軸に平行 となる接線が引けないような増 加関数であるから, G. G2 の うち G2 が正しいグラフとなる。 x ... y' 3 y + 23037 .... 2 0 + E 0 よって、Cの概形は G3 である。 (ア)~(エ)から、G1~G の曲線Cの概形の組合せは②となる。 |(2) a=-4,b=4 のとき y=x4x2+4x 上の原点における接線の 方程式はx=0 のとき,y'=4であるから F y=4x 右の図より求めるkの値の範囲は 0<k<4 2 y 2 y=x-4x²+4x/ y=4x y=kx 0 2 x 増減表からCは原点でx軸に 接している。 E 増減表から、Cは点 (20) x に接している。 F 接線の方程式 曲線 y=f(x) 上の点 (a.f (a)) における曲線の接線の方程式は y-f(a)=f'(a)(x-a) Point 2=0のとき=4(60)をまから 傾き ここを代入して (1) では、 導関数の符号を把握して3次関数のグラフの増減が正しく理解でき |ているかが問われている。 (2)では,曲線 y=x4x²+4x は原点を通りx と接することがわかっている。そのことを利用して直線 y=kxとの共有 点の考察をしていけばよい。 G 直線 y=kx の傾きが0より大 きく4より小さいとき、 曲線 y=x-4.x +4x と直線 y=kxx>0における共有 点は2個となる。 -79-

解決済み 回答数: 1
数学 高校生

この極大値と極小値求めてるやつって、どこに代入してるんですかー、? 全然同じ数字になりません

72 定積分で表された関数の極値と最大 (1) f(x) = ∫(-3t+2at+3b) dt の両辺をxで微分して -1 f(x)=3x²+2ax+3b A (2)関数 f(x) は x=-1 および x=3 で極値をとるから, f'(x) = 0 は A a を定数とするとき, xで微分すると,g(x)となる ⒷB f(x)=0 が関数 f(x)が で極値をもつための必要 あることを利用する。 x=-1, 3を解にもつ。 ← B 3a a =-1+3 解と係数の関係により -b=(-1)x3 これより α = 3,b=3 このとき f(x)=3x²+6x+9=-3(x+1)(x-3) また f(x)=(3+6t+9)dt = |-c+30°+9t_ 3t2. -1 =-x+3x2+9x+5 であるから, 関数 f(x) の増減表は次のようになり, x=-1 および x=3で極値をとり、適する。 C したがって a=31, b=31 X -1 ... 3 ... f'(x) 0 + 0 極小 f(x) 7 極大 D 0 32 ☆ よって, f(x)は,x=3のとき極大値5をとり, x=-1 のとき極小値」2 a=3,b=3 が十分条件でお ことを確かめた。 D a 定数とするとき Lg (0) dt = 0 a,b,cは また、 (x-a)(x- f(x)=x となる。 ⑩ + y=f(x) a 2次方程式 f(x) 極値 O の解 以下 (1) p>0. 2次方程 の a+ ② a+ また、 の a< さらに, であることを利用して, 極 (0 (3) (2)よりy=f(x) のグラフは, 右の図 のようになる。 YA f(-1)=(-31+6+ の 32 y=f(x) =0 0≦x≦k において, M = 32 となるよ と求めてもよい。 0 0 ② a こうなんの値の範囲は≧3 Point (2) p<0. 次に,f(x) = 0(x>0) となるxの値 を求めると (1)と同 5 0 3 5 x である の -x +3x²+9x +5 = 0 x³-3x²-9x-5=0 (x+1)(x-5)=0 Point の x>0より x = 5 ( a 図り,0≦x≦において,m≧0となるようなkの値の範囲は≧52 Point 定義域が変化する関数の最大値、最小値を考えるときは,グラフをかい て考えるようにしよう。 また、3次関数 f(x) がx=αで極小 (大) 値 をとるとき,f(x)-f(a) は (x-α) で割り切れる性質を利用して,極 小 (大)値と同じ値をとる x = α以外のxの値を求めることができる。 解 合 f(x) f(x)=x 130

解決済み 回答数: 3
1/970