学年

教科

質問の種類

数学 高校生

2番です!これって分母のlogを引いたらダメなんですか??

9/1 2次関数, 三角関数, 指数, 対数を中心にして 37 対数の大小比較 (対数不等式) [1] a>0, a≠1 のとき,不等式loga(x+2)≧loga (3x+16) を解け. [2] 不等式 log7x-3logx (7x)≦-1 を満たす実数xの範囲を求めよ. 解答 (富山大/学習院大) ここ とな t> [2] [1] loga(x+2) loga (3x+16) ...① 真数は正であるから, x+2>0 x> より 3x+160 16 .. x>-2 ...② x>_ 3 > ①の右辺を変形すると, 10ga (3x+16)= loga (3x+16) loga (3x+16) loga a² 2 となるから、 ①より, loga(x+2)_oga(x+16) 底をαでそろえた 2 21oga(x+2)≧loga (3x+16) loga(x+2)2≧loga (3x+16) 底αの値によって,真数を比較したと きの不等号の向きが変化するので、場 ...3 合分けをして考える (ア) a>1のとき,③より, (イ) 0<a<1のとき,③より, 底αが0<a<1の場合は, logaplogag p≤q (x+2)2≧3x+16 (x+2)2≦x+16 x²+x-12≧0 x²+x-12≦0 (x+4)(x-3)≧0 (x+4)(x-3)≦0 x-4, 3≤x -4≤x≤3 であり、不等号の向きに 注意する ②も考えると, ②も考えると, 3≦x -2<x≤3 (ア)(イ)より,不等式① が成り立つxの範囲は、 3≤x (α>1のとき) 0205& 2<x≦3 (0<a<1のとき log7x-310gx (7) ≦1 ・・・4 真数と底の条件から,x>0, x≠1である. 底は1を除く正の数である ④の左辺において log (7x)=10g7(7x)10g77+log7x=1+log7x log7x log7x log7x となるから ④を整理すると, log7x-3. 1+log7x log7x +1≦0 ・・・(5) 底を7でそろえた

解決済み 回答数: 1
数学 高校生

数IIの(2)がわかりません。 [と〇の部分がわかりません。

96 重要 例題 57 剰余の定 (1) f(x)=x-ax +6 が (x-1)2で割り切 を温以上の整数とするとき、 x-1 を (x-1)で割ったときの余りを 求めよ。 CHART & SOLUTION 割り算の問題 基本公式 A=BQ+R を利用 1 次数に注目 ② 余りには剰余の定理 [学習院大] 基本 53 (1)(x-1)2で割り切れる⇒f(x)=(x-1)2Q)×(左党 ⇒f(x)がx-1で割り切れ、更にその商がx-1で割り切れる。 (2)次の恒等式を利用する。 ただし, nは自然数とし,°=1,6°=1である。 解答 a-b"= (a-b)(a1+α"-26+α"-362++ab"-2+6"-1) (1) f(x) は x-1で割り切れるからdf(1)=0 よって 1-a+b=0 -aa-1 L ,348 10 1 1 -α+1 ゆえに b=a-1.. ・① したがって f(x)=x-ax+α-1 =(x-1)(x2+x+1-α ) ST-A-AS-8-Sa-11-a+1 g(x)=x2+x+1-α とすると よって 3-a=0 ゆえに g(1)=0 a=3 条件から,g(x)も で割り切れる。 これを 1 に代入して b=2 (2) x-1 を2次式 (x-1)2で割ったときの商をQ(x), 余 りを ax + b とすると,次の等式が成り立つ。-xs- x"-1=(x-1)2Q(x)+ax+b 両辺に x=1 を代入すると 1 割り算の基本公式 A=BQ+R ゆえに x"-1=(x-1)2Q(x)+ax-a 0=a+b よって b=-a =(x-1){(x-1)Q(x)+α} x"-1=(x-1)(x"-1+x"-2++x+1)であるから xn-1+x"-2+……………+x+1=(x-1)Q(x)+α) (x-1)2Q(x)+α 1=x であるか b=-a=-n) (S-x)=8の項数はxから 両辺に x=1 を代入すると 1+1+....+1+1= a よって a=n ゆえに したがって、求める余りは nx-n PRACTICE 570 での

解決済み 回答数: 1
数学 高校生

三枚目のシグマの計算が分かりません!あと、この3つの問題全てなんですが、格子点の数を求める際、+1しているのが何故かが分かりません!誰か解説してくださると嬉しいです。宜しくお願いいたします🙇

B1-42 (60) 第1章 数 列 B1.28 格子点の個数 **** 自然とするとき、次の条件を満たす整数の組 (x, y) はいくつあ (1) ps/y/≤2p, ps/x/≤2p か、 (2)x+2y≦2p.y≧0x20 (3) 0≤ y ≤500, 0≤x≤√√ 考え方 座標がすべて整数である点を梢子点という。 (1)(2) 具体的な数を入れて考えてみるとよい。 たとえば、(2)では, 0 (学習院大・改 (2,3) 2 x 34p=1 p=2 p=3 30 2 3 10 x O 4 O 0 となり,p=1のとき, 1+3=4 p=2 のとき, 1+3+5=9 p=3 のとき, 1+3+5+7=16 p=4 のとき, 1+3+5+7+9=25 となっている。 p=4 一般に, 直線 y=k (k=p.p-1, ......, 0) 上には, それぞれ 1, 3, 5, (2p+1) 個の格子点が並んでいる。 (3) 0≤x≤√y. (0≤)x²≤y 0≤y≤500, 0≤x≤ y ≤√500=10/5=22.4 より 右の図のようになる。 y 1500 Jx ここでは,与えられた条件を 変形し x²≤y≤500 0 x=k上にある格子点の個数を考える. (2) y YA 2p p+1 p -2p-p O p: 2px p+1 Fo 解答 (1) 領域は、右の図のように、 1辺の長さの正方形4つ分 である。 x=p上にある格子点の個 数は, y=p,p+1,........ 2p, KAEROP-p-1, -2p の{2p-(p-1)}×2=2(p+1) (個) 同様にして, x=p.......... 2p,p. 上の格子点の個数は,それぞれ, x=p上の格子点の 2(p+1) 一方,xp, -2p -2 練習 2(p+1) 個 線の数は 2 (p+1)* B1.1 **

解決済み 回答数: 1
1/18