学年

教科

質問の種類

数学 高校生

答えを見てもよくわからないので教えてもらいたいです!

AX の和 9,35 用 確率と漸化式 (1) 日本 例題 37 00000 12, 3, 4,5,6,7, 8 の数字が書かれた8枚のカードの中から1枚取り出し てもとに戻すことをn回行う。 この回の試行で、数字8のカードが取り出 をnの式で表せ。 される回数が奇数である確率 CHART 確率と漸化式 2回目と (n+1) 回目に着目 & SOLUTION 回の試行で、数字8のカードが取り出される回数が奇数である n 確率がpn であるから, 偶数である確率は 1-pr (n+1)回の試行でDn+1 を求めるには, 次の2つの場合を考える。 n回の試行で奇数回で, (n+1) 回目に8以外のカードを取り出す [1] n n [2] 回の試行で偶数回で, (n+1)回目に8のカードを取り出す 解答 (n+1)回の試行で8のカードが奇数回取り出されるのは, [1] n回の試行で8のカードが奇数回取り出され, (n+1)回目に8のカードが取り出されない [2] n回の試行で8のカードが偶数回取り出され, (n+1)回目に8のカードが取り出される のいずれかであり, [1], [2] は互いに排反であるから 7 Pn+1=Pn• g + (1 − Pn) • _ _ = ³ / Pn + = = = 3 8 LO 変形すると したがって Pn+1 Pi +- 2 - ³ (P-1) 4 1 3/YOSH 1 1 1 2 8 2 また よって,数列{ po-12/2} は初項 - 18 公比 24 の等比数列で 3 3 あるから 1 2 - 3/3\n-1 8 4 3 8 Pn 1 1/3\n pn = ²/2 - 1/2 (³)" - ²1 (1-(³)"} Pn = 24 (1) P1, P2 を求めよ。 (C) 1 (3) Pm を求めよ。 D 8 98* 30 (+1)回目 inf. ① 確率の加法定理 事象 A,Bが互いに排反 (A∩B=①) のとき P(AUB)=P(A)+P(B) ② 独立な試行S, Tで、 Sでは事象A, Tでは 事象Bが起こる事象をC とすると P(C)=P(A)P(B) =-2a+1/2 を解くと a=²1/22 は 1枚目のカード が8の確率であるから 1 Aneke PRACTICE 37 ③ さいころをn回投げるとき,6の目が出た回数をXとし,Xが偶数である確率をP とする。 (2) P1 をP を用いて表せ。 (1) [学習院大 ]

回答募集中 回答数: 0
数学 高校生

55.2 値の知れないQ(x)を消したいからx^2-1=0としたいけどx=iと置いていいのか躊躇しました。求めるxが整数、自然数、有理数とか書いてなければx=iとおいてもいいのでしょうか?

-3x+71 求めよ。 る。......... -1)(x-2) りを考える。 った余りは、 弐または定数 て 1,2 b,cの値 りを見つける 1式)から ■ち b=3 ここの練習5 効である。 を ったときの すると, (-2)(x) 2) +R(x)) a)+R( 代入。 5であ 38 ► 重要 例題 55 高次式を割ったときの余り (1 x"-1 を (x-1)²で割ったときの余りを求 2以上の自然数とするとき, めよ。 (23x100+ 2x7 +1 を x2 +1 で割ったときの余りを求めよ。 指針 実際に割り算して余りを求めるのは非現実的である。 p.88~90 でも学習したように, ① 割り算の問題 等式 A=BQ+R の利用 R の次数に注意, B=0 を考える がポイント。 (12) ともに割る式は2次式であるから、余りは ax+b とおける。 (1) 割り算の等式を書いてx=1 を代入することは思いつくが, それだけでは足りない。 そこで、 次の恒等式を利用する。 ただし, nは2以上の自然数, α=1, 6°=1 α-b²=(a-b)(a-1+α-26+α"362+..+ab^2+b^-1) |x-1=(x-1)'Q(x) +ax+b••••• ① (2)x+1=0の解はx=±i x=iを割り算の等式に代入して,複素数の相等条件 A, B が実数のとき A+Bi=0⇔A=0, B=0 を利用。 両辺にx=1 を代入すると ①に代入して x-1=(x-1)*Q(x+ax-a =(x-1){(x-1)Q(x)+α} 解答 (1) x-1 を (x-1)2で割ったときの商をQ(x), 余りをax+b 解 (1) 二項定理の利用。 とすると,次の等式が成り立つ。 x-1={(x-1)+1}"-1 0=a+b すなわち b=-a ここで, x-1=(x-1)(x"-1+x"-2+・・・・・・+1) であるから xn-1+xn-2+..+1=(x-1)Q(x)+α この式の両辺にx=1 を代入すると 1+1+ ······ +1=α a=n よって b=-αであるから ゆえに, 求める余りは nx-n (2) 3x100+2x+1 を x² +1 で割ったときの商をQ(x), 余りを ax+b (a,b は実数) とすると,次の等式が成り立つ。 3x100+2x+1=(x2+1)Q(x)+ax+b 00000 3・1+2i+1=ai+b 4+2i=b+ai n 両辺にx=i を代入すると 3i100+ 27 +1=ai+b i100= (i2)50=(−1)=1, "= (i²) i=(-1)*i=i であるから すなわち a,b は実数であるから したがって 求める余りは 2x+4 [学習院大 ] a=2, b=4 b=-n 基本 53.54 =Cn(x-1)^+..+n Cz(x-1)2 +mCl(x-1)+1-1 =(x-1)^{(x-1)^^2+..+°Cz} tron ゆえに, 余りはnx-n また, (x-α)の割り算は微 分法(第6章) を利用するのも 有効である (p.305 重要例題 194 など)。 微分法を学習す る時期になったら,ぜひ参照 してほしい。 x=-iは結果的に代入し なくてもよい。 実数係数の整式の割り算で あるから、余りの係数も当 然実数である。 練習 (1) n を2以上の自然数とするとき, x” を (x-2)で割ったときの余りを求めよ。 (p.94 EX39 55 (2) xlo+x+1 を x2 +4で割ったときの余りを求めよ。 91 2章 10 剰余の定理と因数定理

回答募集中 回答数: 0
1/7