学年

教科

質問の種類

数学 高校生

127.1 最後に解答では0<θ<π/2より、と書いていますが 私は0<θ<πと書いてしまいました。 これは減点対象ですか?? またなぜ0<θ<π/2と考えることができるのでしょうか?? 私は2直線があったときに同じ大きさのなす角が2つずつできるので2(α+β)=360°で... 続きを読む

基本 例題 147 2直線のなす角 0000 (1) 2直線√/3x-2y+2=0, 3√3x+y-1=0のなす鋭角0 を求めよ。 (2) 直線y=2x-1との角をなす直線の傾きを求めよ。 esa. 指針> 解答 VERT (1) 2直線の方程式を変形すると CASO COSY PRES -x+1, y=-3√3x+1 2直線のなす角 まず、各直線とx軸のなす角に注目 直線y=mx+nとx軸の正の向きとのなす角を0とすると π m=tane (0≤0<₁ 0+ 2 (1) 2直線とx軸の正の向きとのなす角を α, β とすると,2直線 のなす鋭角は,α <βなら β-α または π-(β-α) で表される。 ←図から判断。 この問題では, tana, tan βの値から具体的な角が得られないので, tan (B-α) の計算に 加法定理を利用する。 公式> 0mag y= √√3 2 図のように, 2直線とx軸の正の向 きとのなす角を,それぞれα, βと すると, 求める鋭角0は0=β-α tanβ=-3√3で, 103 √3 2 tan B-tan a tan0=tan(β-α)= 1+tan Btana tan α= 0<a<であるから 0= 7 3 (2)直線y=2x-1とx軸の正の向き とのなす角をaとすると tang=2 tanattan tan(a+4)= π 4 1 千 tan a tan 4 2-(-3√3-√3)÷{1+(-3√3). √3)=√3 2 もい 2±1 1+2・1 であるから,求める直線の傾きは =-3√3x+1 (複号同順) y= √3 2 sin la co Sa -x+1 -3, -1- 0 Ay 1 3 0 y=2x 4/ B 元 4 10 x ly=2x-1 p.227 基本事項 ② 3293 94 YA n m n 0 +0 2 y=mx+n 単に2直線のなす角を求める だけであれば, p.227 基本事 項②の公式利用が早い。 傾きが m, m2の2直線のな す鋭角を0とすると tan 0= m-m2 1+m1m2 [別解] 2直線は垂直でないから tan 0 -- (-3√3) x 1+√3(-3√3) 2 _7√√3+1 = √3 ÷ 2 2 08から 0= 2直線のなす角は,それぞ れと平行で原点を通る2直 線のなす角に等しい。 そこ で、直線y=2x-1 を平行 移動した直線y=2x をも とにした図をかくと, 見通 しがよくなる。 231 42 4章 24 加法定理

未解決 回答数: 1
数学 高校生

⑵が意味わかんないです。

in (a+B), の値を求めよ、 p.241 =1 を利用して cos a cos B 角α. B 象限に注意。 sin² ar + costs sin²β+cosp= 12_16 13 65 1233 13 22 23 sin(a-8) を求め, sin(a-B) cos(a-B) 計算してもよい ing+coslo= n²+cos を求めよ 4 EX93(1 152 2直線のなす角 (1) 2直線3x-2y+2=0, 3√3x+y-1=0のなす鋭角を求めよ。 基本例 指針 ・例題 (2) 直線y=2x-1 と の角をなす直線の傾きを求めよ。 解答 2直線のなす角 まず, 各直線とx軸のなす角に注目 直線y=mx+nとx軸の正の向きとのなす角を0とすると m=tane (050<n, 077 ) π (1) 2直線の方程式を変形すると √3 y= 2x+1, y=-3√3x+1 図のように、 2直線とx軸の正 2 の向きとのなす角を,それぞれ α, β とすると, 求める鋭角は 0=β-a SIGN √3 2 (1) 2直線とx軸の正の向きとのなす角をα,βとすると, 2直線のなす鋭角は,α<βならβ-α または π-β-α) で表される。 ←図から判断。 この問題では, tane, tan β の値から具体的な角が得られないので, tan ( β-α) の計 算に加法定理を利用する。 an 6 tanc= tan 0=tan(8-a)= tan(a+4)= 0<0</ であるから 0= (2) 直線y=2x-1とx軸の正の向 きとのなす角をαとすると tanq=2 tan ±tan π y=-3√3x+1 -3√3で tan β-tana 1+tan βtana =(-3/3)={(1+(3/3)・丹 π 1 tan a tan- Sa √√3 y=- 1 0 O y=2x 2±1 (複号同順) 1+2・1 であるから 求める直線の傾きは -3, 3 B x /y=2x-1 m X p.241 基本事項 2 ys n to 0 y=mx+n | 単に2直線のなす角を求め るだけであれば, p.241 基 本事項 2 の公式利用が早 い。 1+ 傾きが mi, m2 の2直線 のなす鋭角を0とすると tan 0= x 2 別解 | 2直線は垂直でないから tan 8 m-m2 1+m1m2 √3-(-3√3) 2 -7/3+1/3-√3 ÷ 2 <<から 245 2直線のなす角は,それ ぞれと平行で原点を通る 2直線のなす角に等しい。 そこで、 直線y=2x1 を平行移動した直線 y=2x をもとにした図を かくと, 見通しがよくな る。 練習 (1) 2直線x+3y-6=0, x-2y+2=0 のなす鋭角を求めよ。 2 152 (2)直線y=-x+1との角をなし, 点 (1,√3) を通る直線の方程式を求めよ。 4 章 24 加法定理

回答募集中 回答数: 0
数学 高校生

⑵がいみわかんないです。なんでπ/4がここに入るんですか。また±になってる理由がわかりません。

sin(Q+B), B) の値を求めよ。 cos0=1 を利用して るが、COS acos Bと 36 角α B 象限に注意。 Asina+cos Asin²B+cos 31216 5 13 65 412 5 13 . 11 2013/18 ◄sin(a-8 を求め, sin(a- cos(a- 計算してもお "sin'a+adin sin³8+cos n(er-8), 基本例題 152 2直線のなす角 (1) 2直線√3x-2y+2=0,3√3x+y-1=0のなす鋭角0を求めよ。 4 | (2) 直線y=2x-1 と の角をなす直線の傾きを求めよ。 の値を求め 指針 IB 解答 2直線のなす角 まず、各直線とx軸のなす角に注目 直線y=mx+nとx軸の正の向きとのなす角を0とすると m=tane (0≤0<n, 0= 7 ) (1) 2直線とx軸の正の向きとのなす角をα, β とすると, 2直線のなす鋭角0は,α <βなら β-α または π- (B-α) で表される。 ←図から判断。 (1) 2直線の方程式を変形すると √√3 -x+1, y=-3√3x+1 2 図のように, 2直線とx軸の正 の向きとのなす角を,それぞれ α, β とすると, 求める鋭角は 0=β-α y= √3 2 tan0=tan(β-α)=- tan a=- 9 tanβ=3√3で tan(a+4)= この問題では, tan α, tan βの値から具体的な角が得られないので, tan ( β-α) の計 算に加法定理を利用する。 y=-3√3x+1 tan β-tana 1+tan 3 tan a tan a tan √3 y=- 1Ftan a tan- 4 (複号同順) π 0<0</ であるから 0= 75 3 (2) 直線y=2x-1とx軸の正の向 YA きとのなす角をα とすると tang=2 2001 = Ka I TEIS 4 = −(−3√3-√3)={1+(-3√3). √3)=√3 /3 2 2 340J 2004 S 0 0 16-2 y=2x 0 2±1 1+2.1 であるから 求める直線の傾きは -3, 1 3 =(0) TIA B x SELO _n m x /p.241 基本事項 2 YA n O 0 (S) Ly=mx+n -0 単に2直線のなす角を求め るだけであれば, p.241 基 本事項 2 の公式利用が早 い。 傾きが m1,m2の2直線 のなす鋭角を0とすると tan 0= m-m2 1+m1m2 x -7√3+1/3-√3 2 2 y=2x-10<<から6=7 GURA 10 2直線は垂直でないから tan 0 √3-(-3√3) 1+√3+(-3√3) 2 = 2直線のなす角は, それ ぞれと平行で原点を通る 2直線のなす角に等しい。 そこで,直線y=2x-1 を平行移動した直線 y=2x をもとにした図を かくと, 見通しがよくな る。 練習 (1) 2直線x+3y-6=0, x-2y+2=0 のなす鋭角 0 を求めよ。 ② 152 (2) 直線y=-x+1と4の角をなし,点(1,3)を通る直線の方程式を求めよ。 245 4 章 24 加法定理

回答募集中 回答数: 0
数学 高校生

147.2 この問題を記述して解く場合でも 文章などはこれを書けば大丈夫ですか??

n(a+B), p.227 1. を利用して os a cos B と Bが属する e+cos?a=1 ■+cos2 = 1 216 65 2_33 = sin(al 決め Sil を計算して +costal ! an(a 基本例題 147 2直線のなす角 85 (1) 2直線√3x-2y+2=0, 3√3x+y-1=0 のなす鋭角 0 を求めよ。 (2) 直線y=2x-14の角をなす直線の傾きを求めよ。 指針▷ 2直線のなす角 まず、各直線とx軸のなす角に注目 直線y=mx+nとx軸の正の向きとのなす角を0とすると m=tano (0≤0<r, 0+. 0+ 17/2) 1 (1) 2直線とx軸の正の向きとのなす角をα, β とすると, 2直線 のなす鋭角0 は, α <βなら β-α または π-(β-α) 解答 (1) 2直線の方程式を変形すると y=- -x+1, y=-3√3x+1 √3 2 図のように, 2直線とx軸の正の向 きとのなす角を,それぞれα, βと すると, 求める鋭角0は0=β-α tan a= 2 tan0=tan(β-α)= tanβ=-3√3で, ラ 練習 ②147 tan B-tan a 1 + tan βtan a 0<8</であるから 0=72 3 (2) 直線y=2x-1とx軸の正の向き とのなす角をαとすると tana=2 tan(+4)= で表される。 一図から判断。 この問題では, tan a, tan / の値から具体的な角が得られないので, tan (β-α)の計算に 加法定理を利用する。 tan attan 1-(-3√3-√3)={1+(-3√3). √3)=√3 2 2 π 4 1+tan a tan y=-3√3x+1 π v3 y=- 2±1 (複号同順) 1+2・1 であるから 求める直線の傾きは -3, YA 0 1 0 3 0 y=2x 4 B y=2x-1 x p.227 基本事項 n m = 1+ √3 2 YA n √3 DIA 0 単に2直線のなす角を求める だけであれば, p.227 基本事 項②の公式利用が早い。 2 7√3 2 0<0</ 傾きが mi, m2の2直線のな す鋭角を0とすると tan 0= [別解] 2直線は垂直でないから tan 0 /y=mx+n ÷ m-m 1+m₁m₂ --(-3√3)/5 - (-3√3) AX x 1/1/27 = √3 π から6= = 7/3 2直線のなす角は,それぞ れと平行で原点を通る2直 線のなす角に等しい。 そこ で,直線y=2x-1を平行 移動した直線y=2x をも とにした図をかくと, 見通 しがよくなる。 231 (1) 2直線x+3y-6=0,x-2y+2=0 のなす鋭角0を求めよ。 841- (1-2)9) (②2) 直線y=-x+1との角をなし, 点 (1,3)を通る直線の方程式を求めよ。 4章 2 加法定理 24 便

未解決 回答数: 1
数学 高校生

147.1. tanθ=√3までは解くことができたのですが、 なぜ0<θ<π/2なのですか? 2直線とx軸で三角形ができるので0<θ<πだと思いました。また、記述としてこの問題を解くときグラフがなくてもいいですか??

Y a+cos'a= B+cost = 1000-100 22 23 16 基本例題 147 2直線のなす角 (1) 2直線√3x-2y+2=0, 3√3x+y-1=0 のなす鋭角 0 を求めよ。 (2) 直線y=2x-1との角をなす直線の傾きを求めよ。 指針> 求め 2直線のなす角 まず、各直線とx軸のなす角に注目 直線y=mx+nとx軸の正の向きとのなす角を0とすると π m=tane (0≤0<, 0+- 2 12 337 (1) 2直線とx軸の正の向きとのなす角をα, β とすると, 2直線 のなす鋭角は,α <βなら B-α または π- (B-α) <2個角の公式> 解答 (1) 2直線の方程式を変形すると ANGL y= -x+1,y=-3√3x+1 √3 2 図のように, 2直線とx軸の正の向 きとのなす角を,それぞれα, βと すると, 求める鋭角0は0=β-a √3 2 tan0=tan(β-α)= tan a= π 0= 0<0であるから 3 (2) 直線y=2x-1とx軸の正の向き とのなす角をaとすると tanα=2 tan(a+4)= で表される。 図から判断。 この問題では, tan a, tan β の値から具体的な角が得られないので, tan ( β-α)の計算に 加法定理を利用する。 練習 ②147 tan attan π 4 1+tan a tan π tanβ=3√3で, tan β-tana 1 + tan βtan a =(-3√3)={1+(-3√3)=1/3 4 2±1 (複号同順) 1+2.1 であるから 求める直線の傾きは -3√3x+1 y=√3₁ Lv3 -3, Sa o -x+1 YA 1 0 0 3 0 10 2001- y=2x x p.227 基本事項 ② y=2x-1 n YA n 0 -0 2 単に2直線のなす角を求める だけであれば, p.227 基本事 項②の公式利用が早い。 (5) /y=mx+n 傾きが mi, m2の2直線のな す鋭角を0とすると tan 0= 「別解] 2直線は垂直でないから tan 0 235 dish. (1) 2直線x+3y-6=0,x-2y+2=0のなす鋭角を求めよ。 mi-m2 1+m1m2 √3-(-3√3) 1+√3+(-3√3) 2 7 -1/3+2-√3 ÷ = π 108から x 0 = 75 2直線のなす角は,それぞ れと平行で原点を通る2直 線のなす角に等しい。 そこ で、 直線y=2x-1 を平行 移動した直線y=2x をも とにした図をかくと, 見通 しがよくなる。 231 841 1-8930) (2) 直線y=x+1との角をなし,点(1,3)を通る直線の方程式を求めよ。 4章 24 加法定理

未解決 回答数: 0
数学 高校生

1番です。解説は[1]などの記述に数行使っているため 最後に3つまとめて答えを示していますが、 私の記述の場合、同じことを2回書いてるような記述になっています。この記述でも問題ないですか?

重要 例題110/2次不等式の解法 (4) 次の不等式を解け。 ただし, aは定数とする。 (1) x2+(2-a)x−2a≦0 (2) ax² ≤axise 基本106) 指針 文字係数になっても, 2次不等式の解法の要領は同じ。 まず, 左辺=0 の2次方程式を解く。 それには の2通りあるが,ここで ① 因数分解の利用 [2] 解の公式利用 は左辺を因数分解してみるとうまくいく。 α<βのとき (x-a)(x-β)>0x<a, B<x (x-a)(x-B) <0⇒a<x<B α, βがαの式になるときは,αとβの大小関係で場合分けをして上の公式を使う。 (2) x²の係数に注意が必要。 > 0, a = 0, a < 0 で場合分け。 CHART (x-a)(x-B) ≧0の解α, βの大小関係に注意 解答 (1) x²+(2-a)x-2a≦0から (x+2)(x-a) ≤0 [1] a<-2のとき, ① の解は [2] α=-2のとき, ①は (x+2)² ≤0 よって, 解は x=-2 [3] -2 <a のとき, ① の解は-2≦x≦a 以上から a<-2のとき a≦x≦-2 a=-2のとき x=-2 -2 <αのとき -2≦x≦a ax(x-1) ≤0 (2) ax² ≦ax から [1] a>0のとき, ① から よって, 解は 0≤x≤1 [2] α=0のとき, ① は これはxがどんな値でも成り立つ。 よって、 解は すべての実数 [3] a<0 のとき, ① から x(x-1) 20 よって, 解は x≦0, 1≦x 以上から x(x-1) ≤0 0.x(x-1)≦0 a>0のとき 0≦x≦1; a=0のとき すべての実数; a<0のときx≦0, 1≦x ① 00000 [1] teli [2] [3] Vital -2 ① の両辺を正の数α で割る。 0≦0 となる。 は 「<または=」 の意味なので、 <と = のどちらか 一方が成り立てば正しい。 < ① の両辺を負の数αで割る。 負の数で割るから, 不等号の向き が変わる。 注意 (2) について,ax Sax の両辺を ax で割って, x≦1としたら誤り。なぜなら, ax=0のと きは両辺を割ることができないし, ax<0のときは不等号の向きが変わるからである。 177 3章 13 2次不等式

回答募集中 回答数: 0
1/6