学年

教科

質問の種類

数学 高校生

どなたか答え合わせお願いします🙇‍♀️🙏💦

Ⅰ. 次の太字の英単語に最も近い意味を持つものを,a~d. の中から1つ選びなさい。 解答 は解答用紙1枚目 (マークシート方式) の所定の解答欄にマークしなさい。 (1) opportunity a. charge b. choice chance d. check (3) criterion a standard b. criticism c. agreement d. sequence (5) compensation a. money given or received as payment for a loss b. mathematical statement showing equal parts c. event where people celebrate d. advantage given to only certain people (7) registration a act of recording information b. idea that leads to further discussion c. strong like or appreciation for another d. one part of a larger component (9) distribute a. derive from an original source b. make available to see c. hand out or deliver something d. be different from others (2) reject a. make illegal refuse to accept c. express support d. give an order (4) application formal request a 6. changed behavior official record d. expression of ideas (6) intervention a. event which results in the police arriving b. having the freedom to make decisions c. distance from front to back d. act of coming between groups in a dispute (8) density a. affection for someone or something X. need for food C degree to which an area is filled or covered d. state of ownership (10) circumstance a. outcome of an event b. addition that makes something better c. feeling or action in response to something d. condition or fact that affects a situation

解決済み 回答数: 3
数学 高校生

この問題で、最後4/3^nが変形するところが理解できません。そこまでは理解は出来たかなとは思うのですが、よろしくお願いします。

184 第6章 確率 じゃんけん 標問 83 3人がじゃんけんで 1,2,3番を決める. ちょうど2回目で3人の順位が 確定する確率P(n) を求めよ.ただし, 3人ともグー, チョキ, パーを出す (名大) 確率はすべて て/1/2 とする。 FREEL じゃんけんをする. ♭ 精講 じゃんけんで勝つ確率, 負ける確率, 解法のプロセス 引き分ける確率は だれが勝つか負けるか) だれがだれとだれが)どの手 で勝つか負けるか) に注目し て場合の数を調べる. どの手を出して勝つか負けるか) に注目して考えるのがポイントです. A,B,Cの3人でじゃんけんをするときを考 えましょう. ↓ 全員の手の出し方 (グーチョ キ,パーのいずれを出すか) で ある3人数で割る. たとえば、AがB, Cの2人に勝つのは Aがグー, B,Cがチョキを出す場合 Aがチョキ, B,Cがパーを出す場合 Aがパー, B,Cがグーを出す場合 の3通りあります. ちょうど回目に 1,2,3番の 順位が確定する. ES BがA, Cの2人に勝つ場合も3通り CA,Bの2人に勝つ場合も3通り ですから、3人でじゃんけんを1回するとき 1 人の勝者が決まる確率は 何回目かで1位あるいは3位が 決まり、その後残った2人で2 位, 3位あるいは, 1位, 2位 を決めるためにじゃんけんをし て,ちょうど回目に決着がつ く. 3×3 1 33 3 3人の手の出し方は3通りある です. これは だれが どの手で 勝つか A,B,Cの3通り グーチョキ,パーの3通り HAGSA 1回じゃんけんをするとき 3人 3人,3人→2人, 2人→2人 2人 1人 となる確率を求める. 3×3 を考えて, ^= 1 3³ と求まります. 3人でじゃんけんをして、2人の勝者が決まる ♫ 確率も,上と同じように 3人→2人になるのが,1回目 のとき、2回目のとき, だれとだれが どの手で 勝つか 1回目のときについて確率 を求める. AとBBとCAとCの3通りグー, チョキ,パーの3通り 3×3 と考えて、3x3=12/3 となります。 0 ま と 石

未解決 回答数: 1
1/2