学年

教科

質問の種類

数学 高校生

Sx=2√2 Sy=√2 ではダメですか? また、(個)はつける必要がありますか?

222 基本 例題 144 分散,標準偏差 右の表は,ある製品を成型できる2台の工作機械 X, Yの1時間あたりのそれぞれの不良品の数x, y を 5時間にわたって調べたものである。(単位は個) 7 x 3 5 4 5 8 12 y 6 9 85 -12 (1) x, yのデータの平均値, 分散, 標準偏差をそれぞれ求めよ。 ただし、小 数第2位を四捨五入せよ。 (2)x,yのデータについて, 標準偏差によってデータの平均値からの散らば りの度合いを比較せよ。 日以上 p.217 基本事項 CHART O SOLUTION 分散 1 {(x1−x)²+(x2−x)²+......+(xn−x)²} ズ 解答 S= n 2 s2=x^2-(x)2 (2)標準偏差が大きければ,データの平均値からの散らばりの度合いが大きい。 (1)x,yのデータの平均値をそれぞれxyとすると x==(5+4+8+12+6)= 35 = -=7 (個) 5 y=1/12(6+9+8+5+7)=22=7(個) ①は (1) のデータの分散をそれぞれ sx', sy2 とすると 販売数 であることが 40 5 sx2=1/2((5-7)2+(4-7)2+(8-7)+(12-7)2+(6-7)2}=4 -=8 s,²=—-—-((6-7)²+(9-7)²+(8—7)²+(5-7)²+(7-7)²)=10=2 よって,標準偏差は Sx=√8≒2.8(個), sy=√2≒1.4 (個) 別解 分散の求め方 ②を利用 Sx'==(52+42+82+122+62)-72=-72=57-49=8 285 5 255 Sy'===(62+92+82+52+72)-7= - 72=51-49=2 5 (2) (1)から Sx> Sy 料金 (2 ゆえに,xのデータの方が,平均値からの散らばりの度合いが大きいと考えられる。 12 118 141 142 14 PRACTICE 144 ② 右の変量x,yのデータ 2521|18|17|21|26|23|21|200 について,次の問いに答えよ。 ・・・・・・ (1) 変量 x の分散 sと変量y の分散 s,' を求めよ。 y281930 1327 1230 131523 129 281 58 (2)変量 x, y のデータについて,標準偏差によってデータの平均値からの散らばり の度合いを比較せよ。 人間

未解決 回答数: 1
数学 高校生

数列の問題です。 S-3Sで引き算した後がわかりません。 1+2(3+3の二乗、、、)の出し方を教えてください!

S=1・1+3・3+53 ++(2n-1)・3P-1 一般項が (2n-1) · 37-1 で表される数列の初項から第n項までの和 を求めよ。 PART & SOLUTION CHART& 特産)×(等比)型の数列の S 5-15 を作る(rは公比) 00000 数列の一般項はan=(2n-1)・3n-1 これは等比数列ではないが等比数列に似た形である。 等比数列{ar”-1} の和は s=atartare+ rs= .......+arn-1 artare+......+arn-i+arn ← 引き算しやすい位置に項を書く。 の辺々を引いて (1-r)S=α(1-r") から求めた。 この例題でも、同じ方針で S-3S を計算する。 答 S=1・1+3・3+5・32+....+(n-1)・3-1 両辺に3を掛けると 3.S= 1・3+3・32+. 第 (n-1)項は (2n-3)-3-2 …+(2n-3)・3″-1+(2n-1)・3"計算しやすいように, 3* 辺々を引くと | S-3S=1・1+2・3+2・32 + ...... +2・3n- 1 -(2n-1).3" の項を上下にそろえて 書く。 ~ 383 Sh-1 Sor 介 1歳 3 種々の数列 ト -2S=1+2(3+3°+....+3"-1)-(2n-1)3" ここで3+3°+..+3"-13(37-1-1)=2 (3"-1-1) 3-1 2 ゆえに 3 2 -2S=1+2... (3-1-1)-(2n-1)・3" =1+3"-3-(2n-1)・3" したがって =(2-2n)・3"-2 S=(n-1)・3"+1 (2n-1)・3” である。 符号のミスに注意。 ( )が等比数列の和に なる。 初項3, 公比3 項数 n-1の等比数列の和。 n=1,2を代入して検算 しておくとよい。

未解決 回答数: 1
数学 高校生

シャープペンで指してるところの方法の求め方を教えて欲しいです💦 お願いします

So 基本 例題 106 直角三角形と三角比 図のような三角形ABC において,次のものを求めよ。 (1) sine, cos, tan (2) 線分AD, CD の長さ 00000 A W B D 60° p.174 基本事項 1. 重要 110 B 3 C CHART & SOLUTION 基本は直角三角形 暴行 (1)△ABCは∠C=90° の直角三角形であるから, 三角比の定義 (p.174 基本事項 1 ① ) から求められる。 三平方の定理を利用して, 辺 ACの長さを求めておく。 (2) 直角三角形 ADC において,∠ADC=60°の三角比を考える。 175 解答 BC 3 (1) cos = = AB 4 また, 三平方の定理から an AC よって sin0= √7 tan 0= AC=√42-32=√7 √7 AC = AB 4 BC 3 田 (2) 直角三角形 ADC において 13 AC AC sin 60°=- AD から AD=- A sin 60° D cos' mcl 2 AC AC tan 60°= から CD= = =√√√32√72√2104 √3 == 有理化しておく。 3 √7 √21 = AC²+BC2=AB² 5 AC=√AB²-BC² 08-09 (2) AD CD AC 2.1+2.18=0+0=2:1:√√3 から求めてもよい。 なお,最終の答は分母を CD tan 60° √3 3 I 2 POINT 30°, 45°, 60° = 右の表の三角比の値はよく使うの で必ず覚えよう。 0 30° 45° 1 1 sin 30° 444 2 2 1 √3 0203 COS 2 2 45° 60° 1 tan 1 13212 5 60° √3 PRACTICE 106º 右の図において、線分AB, BC, CA の長さを 求めよ。 A 4章 = 12 D 45° 30° B C 三角比の基本

未解決 回答数: 1
数学 高校生

大門1わかりません

の数 る。 また、 n (P) は ∩B) =n(A)+n(B) ■は全体集合 I p.68 69 も参照。 方法 すべて求める。 目の要素がαの集 書き上げ、続いて、 ■の要素がもの集合、 ■合の順に書き上 によい。 りあり, Bの 方がる通り して求めよ。 © 2 集合の要素の個数の計算 全体集合を U = {1, 2, 3, 4, 5, 6,7} とする。 ひの部分集合 (1,3,5,6,7}, B={2, 3, 6,7} について, n (A), n(B), n (A) を求めよ。 Bが全体集合 Uの部分集合でn(U)=50, n (A)=30, (AUB), 集合A, (イ) ANB (ウ) AUB (エ) AnB n(B)=15, n(A∩B)=10 であるとき、 次の集合の要素の個数を求めよ。 CHART & SOLUTION 集合の要素の個数の問題 図をかいて ① 順に求める EN n(A)=n(U) -n (A) を利用する。 ② 方程式を作る 国の方針により, 求めやすいものから順に, 個数定理を用いて集合の要素の個数を求め n (AUB) =n(A)+n(B)-n (A∩B) を利用する。 ②は基本例題3を参照。 入ってないやつ (1) n(A)=5, n(B)=4 AUB={1,2,3,5,6,7} である からn(AUB)=6 = {24} であるからn(A)=2 n(A)=n(U)-n(A) (2) (7) (1) 10 (2) n =50-30=20(個) n(ANB)=n(U)-n(ANB) =50-10=40 (個) (AUB)=n(A)+n(B) - n(ANB) =30+15-10=35 (個) In(ANB)=n(AUB) =n(U) -n (AUB) -40% =50-35=15 (1) ・U 4 A 5 -U(50) A (30) 3 6 7 ANB (10) B OL 00000 2 B (15) p.264 基本事項 1 Js 265 1歳 1 ←左の図のような, 集合の 関係を表す図をベン図 という。 個数定理を利用。 集合の要素の個数 場合の数 ←補集合の要素の個数。 (A∩B)=15 であるとき、 次の集合の要素の個数を求めよ。 (ア) A (イ) ANB(ウ) AUB ド・モルガンの法則 A∩B=AUB (ウ)の結果を利用。 PRACTICE 10 (1) 上の例題 (1) の集合 U, A, B について, n(U), n(B), n(A∩B), n (AUB) を 求めよ。 (②2) 集合 A,Bが全体集合 Uの部分集合でn(U)=80, n(A)=25, n(B)=40, (エ) ANB

未解決 回答数: 1
数学 高校生

至急数1の質問です!! 何故例題は別解のような解き方が出来るのに、practiceは別解のような解き方が出来ないのですか?? もし出来るのなら、practiceの別解の解き方を添付して欲しいです!よろしくお願いします

330 PR ③ 129 PR ⑤ 130 数学A 9x+4y=50 から 9x=50-4y すなわち ....... ① 9x=2(25-2y) 9と2は互いに素であるから, xは2の倍数である。 ① において, y≧1 であるから 25-2y≤23 よって 9x≦2・23=46 更に, x≧1 であるから 1≤x≤ 9 46 y= 方程式 9x+4y=50 を満たす自然数x,yの組を求めよ。 ② ③ から _50-9x 4 x=2,4 であるから, x,yがともに自然数となる組は (x, y)=(2, 8) 0<x<y<z であるから よって よって 1_11_1 xyz 2 ゆえに 11111_1_3 x xy 11 6 x 12/2+1/12/11/12/2=1/12 かつy<zを満たす自然数x,y,zの組をすべて求めよ。 xyz 2 y 12 4 y であるから ゆえに 4≦x<6 xは自然数であるから x=4, 5 [1] x=4 のとき, 等式は y=6のとき, ① は ①から よって y<8 yは自然数であるから y=5 のとき, ①は これはy<z を満たす。 1/1/1 2 yx よって 11 1 y ここで, 0<y<z であるから 1111_2 2 y これはy<z を満たす。 y ゆえに ゆえに y x 13 2 y=7のとき, ① は 1/3+1/ 7 これは条件を満たさない。 1_1_1 5 2 4 1 1 6 2 4 1 4 x x <6 y=5,6,7 24 11 y 2 1,1 8y 4<y<8 よって よって よって ...... ② ① z=20 z=12 2-1 2= 28 a b が互いに素で an がbの倍数ならば、 nは6の倍数である。 2 3 (a, b, nは整数) xの値の範囲を絞り込 む。 46 9 x=4のときは y=1/2で不適。 = 5.1...... 0<a<bのとき ba 条件4≦xを忘れずに。 +-+-+-+-+-+-+-+-+-12 = 21/01/ =+ y え x=4,x<y より 4<y 1_1 2 12 1-18 2 20 1_3 2 28 が自然数でない。 PR ② 131 (1) (2) PR ② 132 (1)B 右の また、 (2) Al hA A (3 AC 1次不定方程式の自然数解 日本 例題 129 等式2x+3y=33 を満たす自然数x,yの組は xが2桁で最小である組は (x,y)=(1) である。 & SOLUTION ①0000) 1組ある。 それらのうち CHART 方程式の自然数解 不等式で範囲を絞り込む 「x,yが自然数」 すなわち x≧1, y≧1 (あるいは x>0,y>0) という条件を利用して 初からxの値の範囲を絞り込むとよい。 基本例題127 と同様にして方程式 2x+3y=33 の整数解を求めた後で、x,yが自然 数になるように絞り込んでもよい。 1≦x≦15 ③ 2x+3(y-11)=0 2x=-3(y-11) 2x=33-3y |2x+3y=33 から すなわち 2x=3 (11-y).... ① 2と3は互いに素であるから、xは3の倍数である。②1は2の倍数である 11-y≤10 ① において, y ≧1 であるから よって から、yは奇数。 この条 件から絞り込んでもよ 2x≦3.10=30 更に, x≧1 であるから い。 ②③ から x=3, 6, 9, 12, 15 ゆえに, 等式を満たす自然数x,yの組は 75 組 それらのうちxが2桁で最小である組は(x,y)=(12,^3) 別解 x=0, y=11 は, 2x+3y=33① の整数解の1つ2x=33-3y であるから 2.0+3・11=33 ...... ② =3(11-y) ①②から すなわち 2と3は互いに素であるから, xは3の倍数である。 よって, kを整数として x=3k と表される。 ゆえに y-11-2k よって x=3k, y=-2k+11 (kは整数) x≧1,y≧1 であるから 3k≧1, 2k+111 PRACTICE 129 ③ 【福岡工大) 基本127 130 0 よって 1/13ks5 んは整数であるから k=1,2,3,4,5 ゆえに, ① を満たす自然数x,yの組は75組 xが2桁で最小となるのはk=4のときであり、 このときの組は (x, y)=(12, 23) 469 -13WN それぞれのェに対して yは自然数になる。 と変形してもよい。 | 2.3k=-3(y-11) 4m k-10 から k5 不等号の向きに注意。 xが2桁のとき x=3k≧10 15 方程式 9x+4y=50 を満たす自然数x,yの組を求めよ。 の紹介 ヨチャート 1クリッドの互除法と1次不定方程式 MPIAM. まで カ 様な めに 爽や 9. 回

未解決 回答数: 1
数学 高校生

数IIについて  「方程式の実数解をαとする」の部分で、置きかえるのはどうしてですか。

x の方程式 (1+i)x2+(k+i)x+3+3ki = 0 が実数解をもつように,実数k の値を定めよ。 また, その実数解を求めよ。 基本 38 CHART & SOLUTION 2次方程式の解の判別 判別式は係数が実数のときに限る 解答 方程式の実数解をα とすると D≧0 から求めようとするのは完全な誤り (下の INFORMATION 参照)。 実数解を α とすると (1+ i) a²+(k+i)a+3+3ki=0 この左辺をa+bi (a, b は実数) の形に変形すれば, 複素数の相等により a=0, b=0 ← α, k の連立方程式が得られる。 ←置きかえるのは どうして? 784) 複数が合されている (1+i)a²+(k+i)a+3+3ki=0 ...... x=α を代入する。 整理して (a²+ka+3)+(a²+a+3k) i=0 ←a+bi=0 の形に整理。 α, k は実数であるから, Q2+ka + 3, a²+α+ 3k も実数。この断り書きは重要。 よって a²+ka+3=0 ◆ 複素数の相等。 a²+a+3k=0 ① ② から ゆえに よって [1] k=1のとき ① ② はともに α2+α+3=0 となる。 これを満たす実数 α は存在しないから、不適。 [2] α=3のとき ①,②はともに 12+3k=0 となる。 ゆえに k=-4 [1], [2] から 求めるkの値は 実数解は (k-1)α-3(k-1)=0 (k-1)(a-3)=0 k=1 または α=3 ONE 2次方程式には適用できな k=-4 x=3 De ← α2 を消去。 inf を消去すると α3-2²-9=0 が得られ, 因数定理 (p.87 基本事項 2 を利用すれば解くことがて きる。 ←D=12-4・1・3=-11< ← ①:32 +3k+3=0 ②:32+3+3k=0 INFORMATION 2次方程式 ax²+bx+c=0 の解を判別式 D=62-4ac の符号によって判別できる のは a,b,cが実数のときに限る。 例えば,a=i, b=1,c=0 のとき -4ac=1>0 であるが, 方程式 ix2+x=0 の解 異なる2つの実数解をもたない (p.85 STEP UP 参照)。

未解決 回答数: 2