学年

教科

質問の種類

数学 高校生

カッコから下が理解できません。教えて欲しいです。

8 xa-2 より a2-2a-3)x a+1)(a-3)x ≠-1,3 e=_1 a-3 の -1 のとき り0.x=0 +y=1 を のとき 0.x=4だ より |||||||||| となりx=1を解にもつから適する。 よって, k=3, 共通解は1 18xかりを消去して、係数が0になるときと、 0にならないときに分ける。 ax+2y=a0~...... ① x+(a+1)y=a+3 ...... ② とする。 ① x(a+1)-② ×2 より a(a+1)x+2(a+1)y=a(a+1) -L 2x+2(a+1)y=2(a+3) (a²+a-2)x =a²-a-6 (a+2) (a-1)n=(a+2) (a-3) αキー2, 1のとき ta-3 2+(3y-3)x+2y2-5y+k=0 とおき, æについての判別式D をと D₁ (3y-3)2-4(2y2-5y+k) =y2+2y+9-4k さらに, D をりの2次式とみて D=0 の判別式D2をとり D2=12-9-4k)=0とする。 4 よって, k=2 このとき,与式は 2+(3y-3)x+2y2-5y+2 =x2+(3y-3)+(2y-1)(y-2 =(x+y-2)(x+2y-1) ③ 別解 数Ⅱで学ぶ恒等式の考えを利 のとき き 1941 ある方程式 x= a-1 このとき, ①に代入して a(a-3) a-1 +2y=al 2y=a(a-1)-a(a-3)__2a a-1 a-1 a-1 含む方程式 =α+1 は ときは,ク を比べれに き “解は S + a y= 1 なわち α=-2のとき, ③より0.x= 0 だから解はすべ ての実数で, 1, ②ともx-y=1と なる。 0) のと a=1のとき, x=bla よって, して、次 =4 +1)y= x2+3xy+2y2=(x+y)(x+2y) 与式=(x+y+a)(x+2y+B) の形に表せる。 与式=x2+3xy+2y2 +(a+B)+(2a+ として係数を比較する。 a+β=-3 2a+β=-5 ...... ② aβ=k ③... ①,②を解いて, α=-2, B ③に代入して, k=2 このとき (与式)=(x+y-2) (x+2 ③より0.x=-6だから解はない。 20 不等式を解いて,解を数直線 0-1+A 「αキー2, 1のとき a-3 x=- a-1 y= α=2のとき a a-1 x-y=1を満たす (x, y) の組 a=1のとき 2n2-9n-5≤0 (2n+1)(n-5)≤0 -/12/ ≤ n ≤5 0-S -110 1 2 3 解はない。 として整理し,まず, xについて よって, 整数は6個

解決済み 回答数: 1
数学 高校生

図形と方程式の問題です (3)の色の着けたところがよく分かりません。点Pの1つが点Aであるのは何故ですか?解説読んでも分かりませんでした。

頂き を の 部 Y4 図形と方程式 (50点) 0を原点とする座標平面上に, 中心が点 (3, 1) でx軸に接する円Cがある。また、原 点からに引いた接線のうち,傾きが正であるものをとし,Cとlの接点をAとする。 (1) Cの方程式を求めよ。 (2) lの方程式を求めよ。 (3)は,中心がy軸上にあり,点AでCとlに接している。 Dの方程式を求めよ。ま 点PはD上の点であり, OP =3を満たしている。点Pの座標を求めよ。 配点 (1) 10点 (2) 18点 (3) 22点 解答 (1) Cの中心が点 (31) であり, Cはx軸に接するから,Cの半径は, C の中心のy座標に等しく, 1である。 x軸に接する円の半径は、円の 心のy座標の絶対値に等しい。 したがって, Cの方程式は (x-3)2+(v-1)2=1 圏 (x-3)2 +(x-1)²=1 (2) 解法の糸口 Cとl が接することを, 2次方程式が重解をもつ条件に読み替えて考える。 lは原点を通る傾きが正の直線であるから,その方程式は y=mx(m>0) と表される。 C と l が接するとき,これらの方程式からyを消去して得られるxの2次 方程式 (x-3)2+(mx-1)=1 は重解をもつ。 ①を整理すると (x2-6x+9)+(m2x2-2mx+1)=1 (m²+1)x2-2(m+3)x+9=0 ①'の判別式をDとすると2=0であり D 121=(m+3)2-9(m2+1)= 0 -8m²+6m=0 -2m (4m-3)=0 3 m = 0. 4 3 m>0より m = 4 したがって、lの方程式は y= [(2)の別解〕 (3行目まで本解と同じ) 3-4 3 y=x NA A ROS C EL 10 3 x ◆円と直線の方程式からyを消去し て得られるxの2次方程式を ax2+bx+c=0 とし、その判別式をDとすると, D=62-4ac であり 円と直線が接する ← 2次方程式が重解をもつ ⇔D=0 D また,b=26' のとき 1241=b2-ac

解決済み 回答数: 1