学年

教科

質問の種類

数学 高校生

数1の不等式の問題です。なぜ①や③にダッシュがつくのかがわかりません。さらに、a<x<1がどこから来たのかもわかりません。教えてもらえるとうれしいです。

であるための十分条件となる (4) 思考力・判断力 道しるべ ①と③を同時に満たすxが存在する条件を、 数直 線を用いて考える. 最小となるような組 ①を満たすxの範囲は, (1) の結果より, x<1. ... D' ③ を満たすxの範囲は, (3) の結果より, a<x<a+2. ...3 ここで, 1)<4x-1. ... D (い) 1/3X+1. 6倍した. (2) ①と③を同時に満たすxが存在すること が成り立つ条件は、 「かつ③を満たすxが存在すること」 ...4 である。 (あ) ④が成り立つ条件は、 次の図のいずれかのときである. T (3) a+2 ①③'の位置関係がこのような状態になるαの条件 は、 a+2≤1. a as-1. (3' a+2 ・・・ 5 ①③' の位置関係がこのような状態になるαの条件 は, a<1<a+2. -1<a<1. 6 ・・・② よって,④が成り立つの範囲は ⑤ と ⑥ を合わせた 範囲であるから, a<1. 7 このとき 「①③ を同時に満たすすべてのxが ② を満たす」 a+1)|<1. 3 正の定数とするとき,x |x|<A -A<x<A. a <1 <a+2は、 a<1 かつ 1<a+2. a<1 かつ -1<a. よって, -1<a<1. 「①' かつ ③' を満たすxが存 在すること」。 x<1. 条件は, 「① かつ ③ を満たすxの範囲が, ② に含まれること」 - である. よって、⑦の下で ①かつ ③を満たすxの範囲が②' に含まれる条件を考える. (あ) a≦-1のとき. ①' かつ ③' を満たすxの範囲は, 前ページの (あ)の数 直線より,…… a<x<a+2. ... 4 ... D' a<x<a+2. ... 3' as-1. ...5 1sa のとき. ① (3' 1 a a+2 ①' かつ③' を満たすxは存 在しない. 特に a=1のとき, 3)'は、 1 <a<3 となり、このときも ①' かつ ③ を満たすxは存在しない. D (3 a≤ 1/12 であるから,この範囲がx> 1/2に含ま れることはない。 …… (い) −1 <a<1のとき ① かつ ③' を満たすxの範囲は, 前ページの(い)の数 直線より, .... D' a<x<1. この範囲がx> に含まれる条件は, ①かつ ③' (2)' -2- a 2 3 (2)' a a+2 ① かつ 2' a-1 1 a+2 2 O' (3) x a a+2

解決済み 回答数: 1