学年

教科

質問の種類

数学 高校生

赤線を引いたところが数学的になぜ言えるのか分かりません。感覚的には分かるのですが… また、x軸、y軸、y=x、原点対称の媒介変数表示された曲線は赤線のことが言えるのでしょうか。

例題 C2.78 いろいろな曲線(2) 3 媒介変数表示 (517) **** x=cos't tを媒介変数とするとき, 曲線 ly=sin't の概形をかけ. [考え方 例題 C2.77 で求めたアステロイドである。 対称性を利用すると、右のようにOSIST の範囲 概形を調べれば、全体をかくことができる. yy=x/ cost, sint の周期は2mであるから, 0≦t≦2 の範囲で 解答 考える.t=0,0,0, 2-0 に対応する点をそれぞ P,Q,R, S とし,P(x,y) とすると、sinx, c030 x=cos0y=sin'0 cos(0)=-cos'0=-x, sin (n-0)=sin0=y したがって,Q(x, y) より,この曲線はy軸に関して対称 cos(n+0)=-cos0=-x, sin(n+0)=-sin'0=-y したがって,R(-x, -y)より,この曲線は原点に関して対称 cOS (2-0)=cos' Q=x, sin (2-0)=-sin0=-y したがって, S(x, -y) より,この曲線はx軸に関して対称 4 まず対称性を調べ P 0 R さらに,t= .0 に対応する点をP(x, y) とすると, x 軸対称 *y 軸対称 π 2 =cos (46)=sin {(10)}= sin(+0) 4 4 y=sin (6) =cos -6)=cos π 2 (4-0)} =cos (+0) 原点対称 *y=x に関して 称 の4つの対称性が したがって,t=7 +0 に対応する点TはT(y.x) となる.かる. すなわち、この曲線は直線 y=x に関して対称である。 T よって、この曲線の≦ts の範囲の概形を調べる. y y=x/ π π t0. 6 3√3 v2 81-8 x14 y0 > したがって、上の表より, 相当する 24点を定めると右のようになる。 よって、Ot2 における曲線の 概形は右の図のようになる. 4 42 12/ TC 4 22 260 √2 2 40 0 44 OPの長さを求め と次のようになる t 0 √7 OPの長さ 1 4 1671 練習 [x=sint の概形をかけ、 •p.C2-170 C2.78] を媒介変数とするとき、曲線 = sin2t ****

未解決 回答数: 0
数学 高校生

なぜこれでAP:PLをもとめられないのでしょうか

化学重 本題 が1に等しい △ABCにおいて,辺BC, CA, AB を 2:1 に内分する点をそ 84 メネラウスの定理と三角形の面積 M,Nとし, 線分AL と BM, BM と CN, CN と AL の交点をそれ それL, P Q, Rとするとき P:PR:RL= AP: APQR ・イ :1である。 の面積は である。 (1) ΔABL と直線CN にメネラウス→LR: RA これらから比AP: PR RL がわかる。 △ACL と直線BM にメネラウスLP:PA (2) 比BQ:QP: PM も (1) と同様にして求められる。 ABCの面積を利用して,△ABL→△PBR → APQR と順に面積を求める。 00000 [類 創価大] ・基本 82,83 P UM N Q R B 2. L1C CHART 三角形の面積比 等高なら底辺の比, 等底なら高さの比 AABL と直線 CN について, メネラウスの定理により B CA 定理を用いる三角形と aa3M 線を明示する。 AN BC LR =1 NB CL RA N P3 A Q RO 2 3 LR LR すなわち . =1 1 1 RA B 2 RA =1 aa よって LR:RA=1:6 ① △ACL と直線 BM について, メネラウスの定理により 2 AM CB LP 13 LP MC BL PA =1 すなわち LP =1 22 PA PA -1 4 3 よって LP:PA=4:3 ② T AC 2 3 ゆえに A 別解 △ABP= -△ABL= 3 7 ①②から AP:PR: RL=3:イ3:1 (2)(1) と同様にして, BQ:QP:PM=3:3:1から AABL= -△ABC= APQR = 3 32 • 7 3 A -AABC= ABCQ, CAR も同様であるから △PQR=(1-3×27/3) ABC="/17 7 SLS AP:PR: RL HA =l:min とする DE n 1 m+n 2 3 2 APBR= -△ABL= 1+m 6' 2 3' 7 A から l=m=37 -△PBR= 1/1 7 4 L, M, Nは3辺 比に内分する点で ら、同様に考えら BAAD する点を

未解決 回答数: 1