学年

教科

質問の種類

数学 高校生

sinだけ2個三角形を書くのとcos,tanは左に書いて残りの角度が答えになる理由を教えてください

三角 050≤180 (1) sino= CHART 解答 GUIDE たすを求めよ。 √3 2 (2) COS 0=- √2 11125 (3) tan 6-- /3 三角方程式 等式を表す図を、定義通りにかく 三角比の定義 sino=y 半径の半円をかく。 r cos 6= ② 半円周上に,次のような点Pをとる。 tang= (1) 7=2 (2) *=√2 (3) 7-2 (1) y 座標が√3 (2) 座標が-1(3) x座標が√3 ③ 線分 OP x軸の正の部分のなす角を求める。 半径2の半円上で,y座標が√3で ある点は,P(1,3)とQ(-1,√3) の2つある。 求めるは,図の∠AOP と ∠AOQ Q 2 2120° 三角定規の辺の比を利用し よう。 32 (1) Q And -2-10 /1 2x 60° 160° √3 22 6060° であるから,この大きさを求めて 0=60° 120° (2) 半径√2の半円上で, x座標が -1 101 である点は,P(-1, 1) である。 √2 y2 (2) P 求める0 は,図の ∠AOP であるから, この大きさを求めて 1 135° √2 1 A 三平方の 45 ・1 0 √2 x 45° 0=135° を三 (3) 座標が-3 y座標が1である (3) 200 点Pをとると, 求める 0 は,図の ∠AOP である。 -2. 2 2 150° この大きさを求めて 0810 A. 30 ° 0=150° √√30 2 % 0 Ania 30° x x=-√3. y=1 とする。 ご注意 (3) tan0=20180° では、常に y≧0 であるから, tan0=- 1 とし 3 Ans CV110の 100°と次の等式を満たすを求めよ。 ton A==√√3

回答募集中 回答数: 0
数学 高校生

ガウスを不等式の中に入れてるのってどういう意味ですか?

基本 例題 23 数列の極限 (6) ・・・ はさみうちの原理 3 △ 45 ①①① (1) 実数x に対して[x]をm≦x< m+1 を満たす整数とする。 このとき, [102] lim 102m を求めよ。 (2) 数列{an) の第n項 α7 はn桁の正の整数とする。 このとき, 極限 [山梨大) logio an lim を求めよ。 72 [広島市大〕 基本21 指針 この問題も、極限が直接求めにくいので、はさみうちの原理を利用する。 (1) [x] をはさむ形を作る。 x]はガウス記号であり (「チャート式基礎からの数学 I+A」 p.121 参照) [x]≦x< [x]+1 が成り立つ。 これから (2) α は n桁の正の整数 10" 'Man<10" (数学ⅡI) (1)任意自然数nに対して, [102] 10°"z<[10%"z]+1 102-1< [102]≦102 1 [102] < 10²n 102n x-1<[x]≦x <[x]≦x<[x]+1 2章 ③数列の極限 2限 [102] をはさむ形。 から 解答 よって 1 limπ 201 102πであるから [102] lim π はさみうちの原理。 102n 12-00 (2) α は n桁の正の整数であるから 各辺の常用対数をとると 10"-1≦an<10" n-1≦10g10an<n 10g1010=n よって 1 log10 an <1 n n lim (1-1) =1であるから lim log10 an 1 はさみうちの原理。 12-00 n 7→80 注注意 はさみうちの原理を誤って使用した記述例 例えば、前ページの例題22の解答で, A 以降を次のように書くと正しくない答案となる。 0<<6 Aから n² 0<lim- <lim → 2 6 n =0 よって lim n2 =0 2 [説明] はさみうちの原理は 818 an≦cn≦bn のとき lima= limb = αならば limc=α →80 n00 これは, 「acn≦bn が成り立つとき, 極限lima, limb が存在し, それらがαで一致する ならば,{c}についても極限limc が存在し, それはαに一致する」という意味である。 72700 72100 において, 存在がまだ確認できていない極限lim を有限な値として存 上の答案では, 在するように書いてしまっているところが正しくない。 正しくは、 前ページの解答のA, B のような流れで書く必要がある。 n² 11-00271 練習 実数 α に対してαを超えない最大の整数を [α] と書く。 [ ]をガウス記号という。 23 (1) 自然数の桁数kをガウス記号を用いて表すと, k =[[ ] である。 (2)自然数nに対して3”の桁数を km で表すと, lim- kn 12-00 n "である。 [慶応大]

回答募集中 回答数: 0
数学 高校生

ちんぷんかんぷんです。

例題15 二項係数の関係式(2) **** nを正の整数として,次の等式を証明せよ. (1)C2+,C2+,C2+,C32++„C2=2Cn (2) 2≦n,r= 1, 2, …………, n-1 のとき, C,="-1C,+n-1Cr_1 考え方 (1) (1+x)2"=(1+x)". (x+1)" であるから, (1+x)2" の展開式における x”の係数と、 解答 Focus (1+x)"×(x+1)" の展開式におけるx”の係数は一致する. (2)(1+x)=(1+x)(1+x)"-1であり、両辺のxの係数は一致する. (1) 二項定理(a+b)"="Coa"+"Cia" 'b+"Caa"-262+......+"C„b" において、 a=1, b=x とおくと, (1+x)"="Co+,Cix+nC2x2+....+nCnx" a=x, b=1 とおくと (x+1)"="Cox"+"Cix”-1+nCzx"-2+.. (1+x)2" = (1+x)"(x+1)" が成り立ち, (1+x)2" の展開式におけるx”の係数は 27 Cn ... ① また, (1+x)". (x+1)" =(nCo+"Cix+n2x++〃nx") („Cox" + "C₁x" + "C₂x" - 2 + .....+nCn) の展開式における x” の係数は, nCoXnCo+miXn1+C2X2+......+nCn×nCn =nCo2+ "Ci2+nC22+, 32 ++,C2 ...... ② ①,②は一致するから, no2+12+2+„C32++Cn2=2nCn (2)(1+x)"=(1+x) (1+x)"-1 である. (右辺) = (1+x) (n-1Co+n-1Cix+n-1C2x2+ の展開式におけるxの係数は,2≦n,r=1,2, n-1 -1Cr+n-1Cr-1 である. +nCn +n-1Cn-1x-1) (E) ......,n-1より、 これは,左辺 (1+x)" の展開式における x”の係数,C, と一致する. よって, 2≦n,r= 1, 2,.......n-1のとき Cr=n-Cr+1Cr-1 . (1+x)^n=(1+x)"(x+1)", (1+x)"= (1+x) (1+x)" などの 展開式における係数から、二項係数のいろいろな関係式が生まれる 注〉 (2) C-1C,+n-1Cr-」 が表す意味 人の中から人を選ぶ方法 (,,通り)は、ある特定の1人を含まないつまり、 残り (n-1)人の中から人を選ぶ方法 (7-1C,通り)とその特定の1人を必ず 含む、つまり、残り(n-1) 人の中から (r-1) 人を選ぶ方法 ( わせたものである。 通り)を合

回答募集中 回答数: 0