学年

教科

質問の種類

数学 高校生

3番です。記述に問題ないですか?

-12 -2 -14 -7, c=1 解答 (1) (ア) 両辺に2を掛けて x2+3x-20=0 通因数の 誤り。メニムー なっ! (イ) 両辺に√2を掛けて 2x²-5√2x+4=0 -3±√32-4·1· (−20) 2.1 よって こなってしまう よって に代入。 次の2次方程式を解け。 3 (ア) -0.5x2-. -x+10= 0 2 ものと考えて CONTOR (イ)√2x2-5x+2√2=0 (2) 方程式3(x+1)^+5(x+1)-2=0 を, おき換えを利用して解け。 (3) 方程式x2+x+|x-1|=5を解け。 [ (3) 金沢工大] 指針 (1) 係数に小数や分数, 無理数が含まれていて, そのまま解くと計算が面倒になるから, 係数はなるべく整数 (特に2次の係数は正の整数) になるように 式を変形。 (ア) 両辺を (-2) 倍する。 (1) 両辺を2倍する。 (2)x+1=Xとおき, まずXの2次方程式を解く。 (3)p.69 基本例題 40と方針はまったく同じ。||内の式=0となるxの値はx=1であ ることに注目し, x≧1, x<1の場合に分ける。 x= x= 2次方程式の解法 5√2±√(-5√2)^-4・2・45√2±3√2 2・2 したがって x=2√2, √2 2 (2) x+1=X とおくと 3X2+5X-2=0 ゆえに (X+2)(3X-1)=0 1 すなわち x +1 = -2, 3 (3) [1] x1のとき, 方程式は 整理すると x2+2x-6=0 x≧1 を満たすものは [2]x<1のとき, 方程式は 整理すると x2=4 x<1を満たすものは [1], [2] から 求める解は よって ゆえに x=-2 x=-1+√7 よって -3±√89 2 = x2+x+x-1=5 よって X x=-2.1/13 x=-3, x2+x-(x-1)=5 4 x=-1±√7 x=±2 x=-2, -1+√7 2 3 係数に小数と分数が混在し ている場合、 まず小数を分 数に直す。 つまり -0.5 = - 基本92 √(-5√2)²-4-2-4 =√18=3√2 5√2+3√2=8√2 5√2-3√2=2√2 2→ 6 -1→-1 X_ 3 3 -2 5 2 x-1≧0であるから |x-1|=x-1 この確認を忘れずに。 <x-1<0であるから |x-1|=-(x-1) この確認を忘れずに。 解をまとめておく。 151 3章 11 2次方程式

未解決 回答数: 1
数学 高校生

カ以降が分かりません。途中式・考え方も教えて頂けたら嬉しいです

演習 1.1 a,bを実数の定数として, xの3次方程式 x-(b+1)x2+(3a+b+5)x-4a+6-13 = 0 はx=2を解にもつとする。このとき イ b= であり,(*)は 7a+ 10 第1講 式と証明、 ウ r2_ I ax+a+ オ と変形できる。 太郎さんと花子さんは (*) の解について話している。 1=0 エ 太郎 : (*)の解がすべて 0 以上となるようなaの値の範囲は求められるかな。 花子:x- | ax+a+ オ=0の解について考えればよさそうだね。 一般に, 2次方程式の解を α, B とするとき, α, β がともに0以上とな る条件は覚えてる? 太郎 : 0 以上の2つの数は足しても、掛けても0以上となるから, α,βがとも に30以上となる条件は「α+B≧0かつαB≧0」 が成り立つことだよね。 花子: 複素数 α, βに対して 「(α, β が実数かつα≧0かつβ≧0) ⇒ (a+3≧0かつαβ≧0)」 は正しいけど (a+B≧0かつb≧0) ⇒ ( α,βが実数かつα ≧0かつβ≧0) 」 は正しくないから, それだけだと不十分だよ。 2次方程式の判別式をD とすると, D≧も満たさなければいけないよ。 (1・1は次ページに続く。) 二人の会話を参考にして, (*) の解がすべて1以上となるようなaの値の範囲を 求めよう。 一般に, 2次方程式の解をα, β とし, 判別式をDとすると, α, βがともに1以 上となる条件は である。 カ a+Bz が成り立つことである。 よって, (*) の解がすべて1以上となるようなaの値の範囲は ケ 0 ク 0 3 a+B 6 aß かつαB キ sas かつ D≧ の解答群(同じものを繰り返し選んでもよい。) ① 4 a+B-1 7aß-1 1 2 2 5 a+B-2 8 aß-2 第1講式と証明 複素数と方程式 指数関数 対数関数

回答募集中 回答数: 0
数学 高校生

[1]はなぜ成り立つと分かるのですか 解説よろしくお願いします🙇‍♀️

2次方程式x2-2(a+1)x+3a=0が-1≦x≦3の範囲に異なる2つの実数解を もつような定数aの値の範囲を求めよ。 〔類 東北大〕 基本 126, 127 重要 130 2次方程式f(x)=0の解と数の大小については, y=f(x)のグラフとx軸の共有点の 指針 位置関係を考えることで,基本例題 126, 127で学習した方法が使える。 すなわち, f(x)=x2-2(a+1)x+3aとして 2次方程式f(x)=0が-1≦x≦3で異なる2つの実数解をもつ ⇔放物線y=f(x)がx軸の1≦x≦3の部分と、 異なる2点で交わる したがってD>0, -1< (軸の位置)<3, (-10 (3)≧0で解決。 CHART 2次方程式の解と数々の大小 グラフ利用 1,、(k) に着目 解答 この方程式の判別式をDとし, f(x)=x²-2(a+1)x+3a とする。 y=f(x)のグラフは下に凸の放物線で、その軸は 直線x=a+1である。 方程式f(x)=0が-1≦x≦3の範囲に異なる2つの実数 解をもつための条件は, y=f(x) のグラフがx軸の -1≦x≦3の部分と、 異なる2点で交わることである。 すなわち,次の [1]~[4] が同時に成り立つことである。 [1] D>0 指針 ★★の方針。 2次方程式についての問 題 2次関数のグラフ におき換えて考える。 * [2] 軸が-1<x<3の範囲にある この問題では,D の符号, 軸の位置だけでなく,区 間の両端の値f(-1), f (3) の符号についての [1] 1/6={-(a+1)-1・3a=a²a+1=(a-1/2) 1+2424 条件も必要となる。 よってD>0は常に成り立つ。..... (*) (+pID=1<(軸)<3 [2] 軸x=a+1について +1 <3 ([+c) -1<a (S)X YA すなわち -2 <a<2 ①点の座標( [3] f(-1)≧0から (−1)²-2(a+1).(-1)+3a≥0) ゆえに [3] f(-1)≧0 [4] f(3) 20. 5+30 すなわち a ≧ - 3 5 [4] f(3) ≧ 0 から 32−2(a+1)・3+3a≧0 ゆえに _3a+3≧0 apので(-) (ト すなわち a≦1 ①,②,③の共通範囲を求めて -2 3 5 TRAH) 1 3 ―≦a≦1 5 注意 [1]の(*)のように,αの値に関係なく、常に成り立つ条件もある。 ONa+1 I 1 +3 18 x

未解決 回答数: 1
数学 高校生

青チャートIIの三角関数の質問です。黄色線の不等式に=を何故つけないんですか?

224 00000 重要 例題 143 三角方程式の解の存在条件 10 の方程式 sin²0+acos0-2a-1=0 を満たす0があるような定数aの値の範 囲を求めよ。 指針▷ まず, 1種類の三角関数で表す (1-x2)+ax-2a-1=0 すなわち cos0=xとおくと, -1≦x≦1 で, 与式は x2 - ax+2a = 0 よって、求める条件は, 2次方程式 ① が-1≦x≦1の範囲に少なくとも1つの解をもっ ことと同じである。 次の CHART に従って, 考えてみよう。 ...... 2次方程式の解と数kの大小 グラフ利用 D, 軸, f(k) に着目・・・・・ 2014 [同志社大] 解答 cos0=x とおくと, -1≦x≦1であり, 方程式は (1-x2)+ax-2a-1=0 すなわち x-ax+2a=0... ① この左辺をf(x) とすると, 求める条件は, 方程式f(x)=0が -1≦x≦1の範囲に少なくとも1つの解をもつことである。 これは,放物線y=f(x) とx軸の共有点について,次の [1] ま たは [2] または [3] が成り立つことと同じである。 口 [1] 放物線 y=f(x) が-1<x<1の範囲で,x軸と異なる2 る条件を考えてもよい。 点で交わる, または接する。 標が-1≦x≦1の範囲にあ 編 p.139 を参照。 したか [1] YA このための条件は、 ①の判別式をDとすると D≧0 D=(-α)²-4・2a=a(a−8)であるから よって a(a-8)≥0 a≦0,8≦a a 軸x=12/28 について-1<<1から 2<a<2… a>- 1/13 a>-1 f(-1)=1+3a > 0 から f(1) =1+a>0 から ②~⑤の共通範囲を求めて <a≦0 3 口 [2] 放物線y=f(x) が-1<x<1の範囲でx軸とただ1点 で交わり,他の1点は x<-1, 1<xの範囲にある。 このための条件は f(-1)f(1)<0 ゆえに (3a+1)(a+1)< 0 よって-1<a<- 3 口 [3] 放物線y=f(x)がx軸とx=-1またはx=1で交わる。 f(-1) = 0 またはf( 1 ) = 0 から a=- または α=-1 3 基本140 [1], [2], [3] を合わせて -1≤a≤0 参考 [2] と [3] をまとめて, f(-1)f(1) ≦ 0 としてもよい。 検討 x2ax+2a=0をaについ て整理すると x2=a(x-2) |よって, 放物線y=x²と直 y=a(x-2) の共有点 16 0 1+ 1 [2] VA 7 - 0 2 V 100 cos グラー 求める

回答募集中 回答数: 0