学年

教科

質問の種類

数学 高校生

(イ)でなんでw=xyって置こうって思えるんですか? 他の解き方ありますか?

14 不等式の証明/拡張した形 2 (ア) (1) yが実数のとき, (2) a, b, c が実数のとき, 4 a2+262+c2 であることを証明せよ。 a+26+c\2 )². であることを証明せよ。 d = === (20 (イ) (1) ||<1, |y|<1のとき,y+1>x+yを証明しなさい。 (立命館大文系) (2) また,(1)を用いて,|x|<1, |y|<1, |z|<1のとき,ryz+2>x+y+zを証明しなさい。 (岐阜経済大) (1)を活用する (2) が (1) を拡張したような形の式を証明するときは,(1)を利用して (2) を示 すことをまず考えよう 本間 (ア)の場合,26262+62, (イ)の場合, ryz (ry) zとして,(1)に結び つける. b²ect + 2 a2+2bc 解答 (a+b2 4 (7) (1) (1)-()==1{2(x²+ y²)-(x+y)²}=(xy)²≥0 となるから, 証明された. 1/42+62 (左辺)= 2 2 (2) (1)の不等式を用いると, (1)-(a+b+c)=(a+b)²+(b+c)"} 2 b² + c² ) = {( a + b )² + (b + c ) ³ } 2 120++9+20) (1)の不等式は, 2 4 [答] []]] O+2) ということ. a+b b+c 12 なお, (2) は, 平方完成で直接 2 2 a+26+c\2 I= _a+b 2 y= 2 btcとして 2 示すこともできる. 4 【 (1) を利用 16{(左辺) (右辺) (イ) (1) (左辺) (右辺) =ry-x-y+1 となるから, 証明された. =(x-1)(y-1)>0 (z <1,y<1だから) (2) w=ry とおくと, |x|<1, |y|<1により,|w|<1である. よって, (1)を用いると, wz+1>w+z :.xyz +1>xy+z 各辺に1を加え,ryz+2>(ry+1) +z 右辺に(1) を使い, ryz+2> (xy+1)+2>(x+y+z となるから, 証明された . =4(α² +262+c²)-(a+26+c)2 =34²+462+3c2 -4ab-4bc-2ca =462-4(a+c)b +342-2ac+3c2 =4(6-a+c)²+2(a-c)²≥0 b- 14 演習題 (解答は p.29) (ア) p, g, r をいずれも正数とする. (1) XY-X-Y + 1 を因数分解しなさい. (2) 2+2-2と2+1の大小を比較しなさい。 (3) 2+2+2-3 と 2D+q+r-1の大小を比較しなさい. (イ) 次の(1),(2)を証明せよ. y (1) 12у2003, 1+1+ 1m (龍谷大文系) (ア) (3) では, 2+q+r=2(p+q)+と見る. (イ) 一般に. |a|+|6|≧|a+b |a+b| |a|+|6| (2) すべての実数a, b について, (岐阜聖徳学園大) 1+a+b1+|a|+|6| が成り立つ. 21

解決済み 回答数: 1
数学 高校生

(2)で(1)の不等式をどう生かしたのか、 解説の一連の不等式の流れがよくわかりません。

14 不等式の証明/拡張した形 (ア) (1) yが実数のとき, 2 (2) a, b, c が実数のとき, x+y\2 であることを証明せよ. であることを証明せよ。 a²+26² + c² = (a+b+c)². (イ) (1) ||<1, y|<1のとき, zy+1>æ+yを証明しなさい。 (立命館大文系) (2)また,(1)を用いて,|x|<1,|y|<1,|z|<1のとき,ry+2+y+zを証明しなさい。 (1)を活用する (岐阜経済大) (2) が (1) を拡張したような形の式を証明するときは (1) を利用して(2)を示 すことをまず考えよう. 本間 (ア)の場合,226262(イ)の場合, zyz(ry)zとして,(1)に結び つける. 2+2btc 解答 4 2 (ア) (1) (左辺) (右辺)= = {2(x²+ y²)-(x+y)²)=(xy)²≥0 1/2++ 46+20) となるから, 証明された. (2) (1)の不等式を用いると, b2+c2 (左辺)= ・+ 2 2 2 1)= 1½ (a² + b² + b² + c² ) = {(a+b)² + (b+c)"} (1)の不等式は, 02+02 0+2 2 2 ということ. a+b b+c + なお, (2) は, 平方完成で直接 a+b 2 2 a+2b+c I= y= 2 4 2' (1)を利用 (イ) (1) (左辺) - (右辺) =ry-x-y+1 =(x-1)(y-10 (x < 1, y<1だから) 示すこともできる。 16 { (左辺) (右辺)} =4(α2+262+c2)-(a+2b+c)2 =3a2+462+3c2 --4ab-4bc-2ca =462-4(a+c) b b+cとして 2 となるから, 証明された. +3a2-2ac+3c2 (2) w=xyとおくと, |x| <1,|y|<1により, |w|<1である。 よって, =4(6-a+c)²+ +2(a-c)2≥O 2 (1)を用いると,wz+1>w+z :.xyz +1>xy+z 各辺に1を加え, yz+2> (xy+1)+z 右辺に (1) を使い, ryz+2>(xy+1)+z>(x+y+z となるから, 証明された. 14 演習題 (解答はp.29) (ア) p. 9. rをいずれも正数とする. (1) XY-X-Y +1 を因数分解しなさい。 HENDER BIG (2)2+2-22-1の大小を比較しなさい . (3)2 +2 +2'320+9+r-1の大小を比較しなさい。 (イ) 次の(1),(2) を証明せよ. (龍谷大文系) (1)とき I y 1+x 1+y (2) すべての実数a,bについて, la+bl 1+a+b |a|+|6| 1+|a|+|6| (岐阜聖徳学園大) (ア) (3)では、 2D+g+r=2(D+q)+ と見る。 (イ)一般に. |a|+|0|≧|a+01 が成り立つ。 21

回答募集中 回答数: 0
数学 高校生

マーカーを引いた部分がよく分かりません 詳しく教えていただけると有難いです💦

基礎問 68 第3章 いろいろな関数 40 逆関数 f(x)=ax-2-1 (a>0.22)とするとき、次の問いに答えよ。 ((1) y=f(x)の逆関数 y=f(x) を求めよ。 エーエ (2) 曲線 C:y=f(x) と曲線 C2y=f-' (z) が異なる2点で交わる ようなαの値の範囲を求めよ. (3) C1, C2 の交点のx座標の差が2であるとき, αの値を求めよ。 精講 〈逆関数の求め方〉 y=f(x) の逆関数を求めるには,この式を x=(yの式)と変形し,xとyを入れかえればよい 〈逆関数のもつ性質> Ⅰ. もとの関数と逆関数で, 定義域と値域が入れかわる Ⅱ. もとの関数と逆関数のグラフは,直線 y=x に関して対称になる 逆関数に関する知識としてはこの3つで十分ですが,実際に問題を解くとき 〈逆関数のもつ性質〉を上手に活用することが必要です。この基礎問では,IIが ポイントになります。 解答 (1) y=√ax-2-1 とおくと, √ax-2=y+1 リーェに で交わる ry-f よって すな 範囲 求め そこ この (3) よって, y+1≧0 より, 値域はy≧-1 ここで,両辺を2乗して 大切!! ax-2=(y+1)2 . x=11 (y+1)²+² (y≥−1) a よって、f(x)=1/2(x+12+2/2/(x-1) a a 【定義域と値域は入れ かわる 注 「定義域を求めよ」 とはかいていないので, 「x≧-1」は不要と思う 人もいるかもしれませんが,xの値に対して」を決める規則が関数で すから、xの範囲, すなわち, 定義域が「すべての実数」でない限り は、そこまで含めて 「関数を求める」 と考えなければなりません. (2) y=f(x)とy=f(x)のグラフは,凹凸が異なり,かつ,直線 253

回答募集中 回答数: 0
数学 高校生

(ア)で合成をしないのは、 √5が出てきてもありがたいことがないからですか? √5になる角度なんて求めるのしんどいからですか?

●11 三角方程式・不等式 (ア) 2cos-sin0=1であるとき, cose, sin 0 の組を求めよ. (兵庫医療大・リハビリ, 改題) (イ) のとき, sin≧cos0 をみたすの範囲は [ である. 0 √√6 (ウ) 0°6<180° のとき, 2cos2 +sin 0- -1≧0 を解け. 2 2 (エ) sin0+ sin20+ sin30>0を0≦0<2の範囲で解け. (芝浦工大) (福岡大,商) (信州大・繊維) cos'0+sin20=1の利用 この基本関係式を用いて, cose と sin0の入った式を cose か sin0のど ちらか一方だけの式にそろえるのが基本の手法である. 単位円を利用 三角関数の方程式・不等式を解く際 にも単位円を活用しよう. 図 1 YA 図 2 12 点P (cose, sin0) は図1のような点を表す. よって 例えば「0≦02 のとき, sin≧1/2を解け」なら, P は図2の太線部にある (sin0はPのy座標だから, y1/2の範囲にある)ことから,T/6≦05/6 となる. また,次の前文 (1番目と2番目) も参照. 0 O 48 +56 12 y=1/ QA 6 HY 角をそろえる (ウ) のように 0/2 と 0 が混在するときは, 0にそろえよう。 合成の活用 例えば sin+cose は変数が2か所にあるが,合成すると1か所になる効果がある。 積の形に直す 多項式の方程式・不等式を解く際の基本は因数分解である. 三角方程式・不等式を 解くときも同様に,積>0 などの形にしよう. (エ)では,2倍角 3倍角の公式を利用すればよい。

解決済み 回答数: 2
数学 高校生

(2)って6分の1公式使えないのですか?

基本 例題 2462曲線間の面積 | 次の曲線や直線で囲まれた図形の面積Sを求めよ。 (1) y=x2-x-1,y=x+2 指針 解答 0000 ( (2) y=x²-2x,y=-x+x+2 基本 240 245 ① まず,グラフをかき, 曲線と直線または2曲線の交点のx座標α,β(a<β) を求 めて、積分区間を決定する。 ② ①で決めた区間におけるグラフの上下関係を調べ, 被積分関数を定める。 3≦x≦ß で常に f(x)≧g(x)ならS=S{f(x)-g(x)}dxを利用して面積 を求める。 なお,この問題では,定積分の計算に次の CHART の公式が利用できる。 CHART 放物線と面積S(x-a)(x-3)dx=-1/2(B-α)を活用 (1) 曲線と直線の交点のx座標は, x2-x-1=x+2 すなわち x²-2x-3=0を解くと (x+1)(x-3)=0から x=-1, 3 右の図から,求める面積は 2 S -10 3 x -1 x)dx s=S_{(x+2)-(x2-x-1)}dx =S,(-x+2x+3)dx=-S(x+1)(x-3)dx 検討 放物線と直線 (x軸も含 む)または、2つの放物線 で囲まれた部分の面積に ついては, CHART の公 式 (6分の1公式) が利用 できる。 -Sex-a)(x-B)dx =-(-1) (3-(-1))³-32 (2) 2曲線の交点のx座標は, x2-2x=-x2+ x + 2 すなわち 2x2-3x2=0を解くと (2x+1)(x-2)=0から 2 S 2 1 2 x 2X-2→-4 1 → 1 2 -2 -3 x=- 2 2 , 右の図から、求める面積は S=S_{(-x'+x+2)-(x²-2x)}dx 1012 =S』(-2x²+3x+2)dx=-2f(x+1/2)(x-2)dx x) (S 125 24 -2x2+3x+2 =(2x+1)(x-2) --2(x+1/2)(x-2)

解決済み 回答数: 1
数学 高校生

三角関数の不等式の問題です。 ⑵の線を引いた部分が理解できません。 どなたか簡単に解説していただけると助かります。

202 基本 例題 124 三角方程式・不等式の解法 (2次式) 0≦0 <2π のとき,次の方程式・不等式を解け。 (1) 2cos'-sin0-1=0 CHART & SOLUTION (2)2sin'+5cos0 <4 sin0 と coslを含む2次式 1つの三角関数で表す かくれた条件 sin 20+cos20=1 を活用して, 与えられた方程式・不等式を、 どちらか一方で表された方程式・不等式に整理する。 (2)0≦2 のとき, -1≦cos 0≦1 に注意。 基本18 sin0, Cos 解答 ⑩ (1) 方程式を変形して 整理すると 2 (1-sin')-sin0-1=0 2sin20+sin0-1=0 因数分解して よって 002 であるから [1] sin0=-1 のとき 0=- 3 2" (sin0+1)(2sin0-1)=0 sin0=-1,1/12 [2] sino=1/12 のとき 0-1 31 = π 5 6 6 YA π H cos20-1-sin' して, sine だけの ←1 2- 22 [1] 直線 y=-1 と 円の共有点 [2] 直線 y=1/2 円の交点 を考える。 したがって 3-2 10 11 -1 5 3 6 6 0=0 (2)不等式を変形して 2π 12 +5-6 0 2 (1-cos20)+5cos0<4 2cos20-5 cos 0+2> 0 716 (cos 0-2)(2 cos 0-1)>0 1 ●単位円上の点Pの が1/12より小さくなる! な動径 OP を表すの の範囲を求める。 整理すると 因数分解して -1≤cos 0≤1 Th3 4 5 k cos 0-2<0 H よって 2 cos 0-1<0 ゆえに cos < -1 00<2mであるから << 1/3 5 ← 1 (x,y) |1|2 53

解決済み 回答数: 1