学年

教科

質問の種類

数学 高校生

(イ)のところでなんでt²=1-2sinxcosxになるんですか?

しょう 98 第4章 三角関数 60 三角関数の合成(II) (1)ss のとき,f(s)=v3 cosx+sing の最大 小値を求めよ。 (2) y=3sin.rcos.r-2sinx+2cos r (OSIS) について =sincosz とおくとき,そのとりうる値の範囲を求め (イ)の式で表せ。 (ウ)の最大値、最小値を求めよ。 (1)sinx=t(または,cosx=t)とおいても!で表すことができ ません。 合成して,エを1か所にまとめましょう。 (2)IAので学びましたが,ここで,もう一度復習しておきま sing, COSIの和差積は, sin' + cos'x=1 を用いると、つなぐことができる。 解答 +cos.sin) その方程式を解 BLE-CORE-1 まし のにする。次に、 (1)(2)+/12--1 注 (i)は、 2sin 最大 99 11/12々を計算してもよい。この場合は、加法定理を利用 ) します。(1/2 2singを計算した方が早いです。 (2) (7) t=sincosr=√2 r-cosr=√2 sin (1-4) だから、 -sin(-4) :.-1≤t≤1 (イ) 2=1-2sin rcosェ だから 3 sin x cos x= (1. -(1-1)-2---21+ (") y=−³ (t+²²)²+13 (−1st≤1) 右のグラフより 最大値 12,最小値 -2 この程度の合成は、 すぐに結果がだせる まで練習すること 41 44 0 44 第4章 (1) f(x)=2(sin x cos T 合成する 2 T T +3 7 127 ポイント 12 12 0 最 I+ 3 12", 2018/1/27 すなわち のとき + 2 2 ( 最小値 2 演習問題 60 すなわち のとき 5 合成によって, 2か所にばらまかれている変数が1か 所に集まる y=cos' rx-2sincoss+3sinx (0≦x≦) ① について 次の問いに答えよ. (1) ① を sin2x, cos2cで表せ。 (2) ①の最大値、最小値とそのときのェの値を求めよ.

未解決 回答数: 0
数学 高校生

イの式のTの2乗の式がわかりません

精講 BU (1)のとき、f(x)=√ 小値を求めよ. 7 π 22 10 (i)は,2sin 12 を計算してもよい。この場合は,加法定理を利用 =√3 cosx+sinx の最大値、 注 最 (- 7 します。 (01/22) 九 π= 3 +など) について, 7 (2)/y=3sin.rcos.resin.z+2cos しょう. 7)t=sinzeos.』 とおくとき, tのとりうる値の範囲を求め よ (イ)yをt の式で表せ. -π (i)は,2sin を計算した方が早いです。 (2) (7) t=sinx-cosx=/2sinx− (ウ)yの最大値、最小値を求めよ、 1 (1) sin.x=t (または, cos.=t) とおいてもtで表すことがで ません。合成して,ェを1か所にまとめましょう。 (2)IAの72 で学びましたが,ここで,もう一度復習しておき/ sing, COSIの和差積は, sin' x+cos2x=1 を用いると、つなぐことができる. π だから、 4 sin(x-4) = 1/2) .. -1≤t≤1 (イ) t2=1-2sinxcosx だから =1/28 (1-12) 3sinxcosx=- v=122 (1-1-2t=120-2t+2/27 y= (ウ) y=- 3 (1 + 2)² + 1/32 (-15151) 2 この程度の合成は, すぐに結果がだせる まで練習すること 41 1. √2 0 √2 y 66 4 4 解答 (1)f(x)=2sin.zcos/+cosr*sin 7 =2sin\r 2sin(x/4-5) 3 setsだから。 (i) 最大値 3 + 1/2 = 1/24 すなわち、x=2のとき (Ⅱ) 最小値 九 x+- 7 3 T. ++ 2 2 3 6 1 右のグラフより 最大値 13 6' 最小値 2 合成する 7 12 10 ポイント 合成によって, 2か所にばらまかれている変数が1か 所に集まる 12 演習問題 60 y=cosx-2sinxcosx+3sinx (0≦x≦)① について, 次の問いに答えよ. (1) ① を sin2x, cos2.x で表せ. の値を求めよ

未解決 回答数: 0
数学 高校生

テトナがわかりません。 答えに樹形図があったのですがいまいち理解ができませんでした…どなたか写真の樹形図の説明と書き方を教えてください。 すみませんがよろしくお願いします🙇‍♀️

第4問 (配点 20) 1個のさいころを繰り返し投げ,次の規則(a), (b) にしたがって箱の中の球の個数 (以下, 球数) を変化させる。 最初, 箱の中に球は入っていない。 (2) さいころを2回投げた後の球数のとり得る値は, 小さい方から順に 2, ウ I 2回 であり,それぞれの値をとる確率は次のようになる。 規則 (a) 1回目に出た目が, 3の倍数のときは箱に球を1個入れ, 3の倍数でないと きは箱に球を2個入れる。 b 2回目以降は次のように球数を変化させる。 出た目が3の倍数のときは箱に球を1個追加する。 出た目が3の倍数でないときは球数が2倍になるように球を追加する。 例えば, 1, 2, 3回目に出た目がそれぞれ 6, 3, 2ならば, 球数は 0個 → 1個 +1 ← 2個 4個 +1 ×2 と変化する。 ア (1) さいころを1回投げるとき, 3の倍数の目が出る確率は である。 イ (数学Ⅰ 数学A第4問は次ページに続く。) 球数 2 ウ I 確率 13 オ キ カ ク ケコ よって, さいころを2回投げた後の球数の期待値は である。 また, さいころを2回投げた後の球数が エ であったとき 2回目に出た目 シメ が5である条件付き確率は である。 スメ (3) 球数が5以上になったところでさいころを投げることを終了するものとし, 終了 するまでにさいころを投げる回数をN とする。 ソタメ Nの最小値は であり, N= となる確率は である。 チツ× テトX X また,Nの期待値は である。 X

回答募集中 回答数: 0
数学 高校生

倍数の判定法について 写真 2枚目の疑問にお答えいただきたいです。

まとめ いろいろな倍数の判定法 p.426 の基本事項」で紹介できなかったものも含めて、いろいろな倍数の判定法をまと めておこう。 2の倍数 3の倍数 4の倍数 5の倍数 6 の倍数 7の倍数 8の倍数 一の位が0.2.4.6, 8のいずれか(一の位が2の倍数) 各位の数の和が3の倍数 下2桁が4の倍数(00含む) 一の位が0.5のいずれか(一の位が5の倍数) 2の倍数かつ3の倍数 一の位から左へ3桁ごとに区切り、奇数番目の区画にある3桁以 下の数の和と、偶数番目の区画にある3桁以下の数の和との差が 7の倍数 (下3桁が8の倍数(000含む) 9の倍数 各位の数の和が9の倍数 10の倍数 一の位が0 11の倍数 一の位から見て, 奇数番目の位の数の和と, 偶数番目の位の数の 和との差が11 の倍数 4 13 約 数と倍数 これらの倍数の判定法のうち,7の倍数と11の倍数について,具体例で紹介しよう。 ●7の倍数の判定法 98076328において, a=98,b=76,c=328 とすると 98076328=qX 10°+6×10+c ここで =(106-1)a+(103+1)b+(a+c)-b 10°-1=9999997×142857, 10°+1=1001=7×143 I 7の倍数 よって, (a+c)-6が7の倍数ならば,98076328は 7の倍数である。 ここで (a+c)-b=(98+328)-76=350=7×507の倍数 したがって,980763287の倍数である。 ●11 の倍数の判定法 92807において, a=9, 6=2,c=8,d=0, e=7 とすると 92807=α×10+6×10°+c×102+d×10+e 3桁ごとに区切ると 98076328 a b c (a+c)-6が7の 倍数ならば、 98076328は 7の倍数である。 =(10^-1)a+(10°+1)+(102-1)c+(10+1)d+(a+c+e)-(b+d) ここで 10^-1=9999=11×909, 102-1=99=11×9. 10°+1=1001=11×91, 10+1=11 11 の倍数 よって, (a+c+e)-(b+d) が11の倍数ならば, 92807 は 11 の倍数である。 ここで (a+c+e)-(b+d)=(9+8+7)-(2+0)=22=11×211 の倍数 したがって, 92807 は11の倍数である。

回答募集中 回答数: 0
数学 高校生

n=k+1のときを考えると〜 以降の計算の仕方がわかりません。 教えていただきたいです🙇‍♀️

納 基本 例題 55 等式の証明 が自然数のとき,数学的帰納法を用いて次の等式を証明せよ。 1・1!+2・2! + ・・・...+n.n!=(n+1)!-1 指針 ① 数学的帰納法による証明は, 前ページの例のように次の手順で示す。 [1] n=1のときを証明。 [2]n=kのときに成り立つという仮定のもとで, +1のときも成り立つことを証明。 [1] [2] から, すべての自然数nで成り立つ。 出発点 ←まとめ 00 49 [類 早稲田大〕 p.498 基本事項 1 [2]においては,n=kのとき①が成り立つと仮定した等式を使って,①のn=k+1 のときの左辺 1・1!+2・2!+....+k•k!+(k+1)(k+1)! が,右辺 {(k+1)+1}!-Iに 等しくなることを示す。 また,結論を忘れずに書くこと。 [1] n=1のとき 注意 検討 (左辺) = 1.1!=1, (右辺) = (1+1)!-1=1 よって,①は成り立つ。が成り立つと [2] n=kのとき, ①が成り立つと仮定すると 1.1!+2.2!+ ·+k•k!=(k+1)!-1 n=k+1のときを考えると,② から 1·1!+2•2!+…………….+k•k!+(k+1)·(k+1)! =(k+1)!-1+(k+1) ・(k+1)! ={1+(k+1)}(k+1)!-1 =(k+2)・(k+1)!-1=(k+2)!-1 ={(k+1)+1}!-1 よって, n=k+1のときにも①は成り立つ。 は数学的帰納法 の決まり文句。 答案ではき ちんと書くようにしよう。 kは自然数(k≧1)。 ①でn=kとおいたもの。 n=k+1のときの① の 左辺。 n=k+1のときの① の 右辺。 [1][2]から、すべての自然数nについて①は成り立つ。結論を書くこと。 数学的帰納法では, 仕組み (流れ)をしっかりつかむようにしよう (指針の [1], [2])。 なお, [1]でn=1の証明が終わったと考えて, [2] でn=kの仮定を k≧2 としてしまって は誤りである。 注意するようにしよう。

回答募集中 回答数: 0