学年

教科

質問の種類

数学 高校生

「シ」が分かりません 緑チャートの問題です 解説お願いしますm(_ _)m

116 17:58 B マイページ 数学 高校生 たり 解決済みにした質問 POINT! 第6章 図形の性質 BQC 質問 重要 例題25 平面図形と三角比 △ABCにおいて, AB=4√2, BC=CA=4 とする。 線分 AC を 1:3に内分す る点をPとし, 3点B, C, P を通る円Sと線分ABの交点のうちBでない方を Q とする。 また,円Sの点Qにおける接線と直線BC の交点をRとする。 このとき,BP=アである。 ここで,線分 BP は円Sの直径であり, I√√ ∠CBQ=イウであるから, CQ= である。 カ また, 直線 BQ と直線 CP が点Aで交わり, 4点 B, C, P, Q は同一円周上にあ るので, AQ=Y である。 よって, BQ= である。 ク サ SCLOE 次に,直線 RQ は円Sの接線であるから, ∠QBR=∠シ である。 よって, AQBRと シは相似である。シに当てはまるものを、次の⑩~③の うちから一つ選べ。 O APQ ス したがって, CR= QR である。 tz また, 直線 RQ は円Sの接線であり, B,Cは点 R を通る直線と円Sの交点であ るから, QR= ソタ チ である。 解答 AB=4√2, BC=CA=4より △ABCは タイムライン ② BRQ 公開ノート 107 線分の長さを求めるとき, 三角比の知識を利用することがある。 40% 4√2 ③ CQR ・三角形の外接円の半径(直径) 正弦定理 (21) - 2辺とその間の角から残り1辺を求める→余弦定理 (22) 進路選び all 35 ? Q&A 編集 7時間前 ( 第3章) 閉じる マイページ

回答募集中 回答数: 0
数学 高校生

導関数の最大最小の問題です 最後の最大最小のまとめ方がなぜこうなっているのかが分かりません。x=2で最小値-4などはどこから来たのでしょうか。 教えて頂きたいのです よろしくお願いします🙇‍♀️

416 例題 234 関数の最大・最小〔5〕・・・係数に文字を含む よびそのときのxの値を求めよ。 a>0とする関数f(x)=x-3ax 0≦x≦3) の最大値と最小値, お 思考プロセス Re Action 関数の最大・最小は, 極値と端点での値を調べよ 例題228 f'(x)=3x-6ax=3x(x-2a) であり aの値が大きくなるとき, グラフ全体が平行移動するのではなく, 極小値をとるx (2a) が右側へ動いていく。 問題を分ける 最大値と最小値を同時に考えるのは難しいから, 分けて考える。 (極小となる点を 区間に含む 最小値 最大値 x f'(x) + f(x) > 0 0 極小となる点を 区間に含まない / ・・・・・ (最小値)=(極小値) /区間の両端での 値の大小を考える f'(x)=3x²2-6ax=3x(x-2a) f'(x) = 0 とすると x=0, 2a よって, f(x) の増減表は次のようになる。 YA 0 2a 0 + -4a³7 ゆえに,y=f(x)のグラフは右の図。 最小値について (ア) 3 <2a すなわちa> f(x)はx=3のとき 最小値 27-27a - f(x) は x = 24 のとき 最小値-4 3 12/2のとき 3 (イ) 20≦3 すなわちaso2 のとき *** /区間の両端での 値の大小を考える 境界となる 両端の値が等しいときを考える 0 U 0 -4a³ 2a x 2a 3 D YA O 2a N dara 2a a>0 より 2 > 0 S 極小となるx = 24 を区 間 0≦x≦3に含むかど うかで場合分けする。 3 245 = (- 次に, 最大値について f(x)=f(0) となるxの値は x-3ax² = 0 より x2(x-3a) = 0 よって (ア) 3 <3a すなわちa>1 のとき f(x)はx=0のとき 最大値 0 x = 0, 3a (イ) 3a = 3 すなわちα=1のとき f(x) は x = 0, 3のとき 最大値 0 (ウ) 34 <3 すなわちa <1のとき f(x)はx=3のとき 最大値 27-27a a=1のとき 1<a ≤ 3 2 3 2 R O <a のとき -4a³ ------ 0 3a 0 3a3 以上より, f(x) の最大値と最小値,およびそのときのxの 値は ( 8 (0<a<1のとき 2a のとき x=0で最大値 0 x 3.3g 3 x=3 で最大値 27-27a x=2で最小値-4c x = 0, 3 で最大値 0 x=2で最小値 4 x=2αで最小値-4α x=0で最大値 0 x=3で最小値 27-27a 最大値となり得る極大値 f (0) = 0 と等しい値をと るxの値を求める。 p.407 Go Ahead 16 の内 容を用いて, x = 3g を確 認できる。 (Svarar 1 aaa 0 2a 3a x=3g を区間0x3 に含むかどうかで場合分 けする。 (ア) (イ) の最大値は一致 するが、 最大値をとるx の値が異なるから, 分け て考える。 分かりやすいように, 最 後に, 最大値と最小値を まとめる。 Point... 定数を含む関数の最大・最小・ 例題234 において、 場合分けを考えるとき, 固定された区間 0≦x≦3に対して, グラ フを x = 24 や x=3α に着目し伸縮させて考 えた。 (最小値) (ア) 見方を変える 右の図のように、グラフを固定して,区間の端 点x=3を相対的に動かしても考えやすい。 (イ) (最大値) (ア)(イ) (ウ) HUN 0 32a 0 3 3a3 5章 14 導関数の応用 練習 234a>0とする。 関数 f(x)=x-342x (0 ≦x≦1) の最大値と最小値, およ びそのときのxの値を求めよ。 p.430 問題234 41

回答募集中 回答数: 0
数学 高校生

「シ」が分かりません 緑チャートの問題です 解説お願いしますm(_ _)m

116 第6章 図形の性質 重要 例題25 平面図形と三角比 △ABCにおいて, AB=4√2, BC=CA=4 とする。 線分 AC を 1:3に内分す る点をPとし, 3点 B, C, P を通る円Sと線分ABの交点のうちBでない方を Q とする。 また,円Sの点Qにおける接線と直線BCの交点をRとする。 このとき, BP=アである。ここで 線分BP は円Sの直径であり, I√ である。 カ ∠CBQ=イウであるから, CQ= DN また, 直線 BQ と直線 CP が点Aで交わり, 4点 B, C, P, Q は同一円周上にあ □ケ√コ である。 よって, BQ= サ √キ である。 るので, AQ= ク 次に,直線 RQ は円Sの接線であるから,∠QBR=∠シ である。 よって, AQBRとシは相似である。シに当てはまるものを次の⑩~③の うちから一つ選べ。 O APQ @ BQC したがって, CR= QR である。 また, 直線 RQ は円Sの接線であり, B,Cは点 R を通る直線と円Sの交点であ 1 るから, QR= ソタ チ である。 1:1-30:08 POINT! DA 0A- ス セ ② BRQ 線分の長さを求めるとき, 三角比の知識を利用することがある。 解答 AB=4√2, BC=CA=4より, ABCは . 三角形の外接円の半径(直径) → 正弦定理 (21) ・2辺とその間の角から残り1辺を求める→余弦定理 ③ CQR 4√2 QA (第3章) 基22)

回答募集中 回答数: 0
数学 高校生

(2)のしたがって以降からわかりません。 解説お願いします🙏

A 10km Bdkm C 4人 2人 [2] 右の図2のように, A地点B地点、C地点がこの順にあ り, A地点からB地点までの距離が10km, B地点から C 地点までの距離がdkm (d>0) である場合について考える。 A地点に4人, B地点に2人, C地点にc人 (c>0) がいるとする。 集まる場所はA地点から 図2 C地点までの間と考えてよいから、A地点から集まる場所までの距離を xkm (0≦x≦10+d) とし、移動コストをykm とする。 yは絶対値記号を一つ含むxの関数として与えられる。この関数はy= | に当てはまるものを、次の⑩~③のうちから一つ選べ。 4.x+2|x-10|+c(x-10-d) ② 4x+2(x-10)+clx-10-d である。 ケ ②x=16 ① 4x+2|x-10/+c(10+d-x) 4x+2(10-x)+clx-10-d (1) c=1, d=6のときについて考える。 y が最小となるのはxの値がどのようになるときかを、 次の⑩⑥のうちから一つ選べ。 ただし, 例えば x = 11 のとき,かつ,そのときのみでyが 最小となるときは⑥を選択すること。 (0) x = 0 ①x=10 (3) 0≦x≦10 を満たすすべての実数 (4) 10≦x16 を満たすすべての実数 ⑥ x = β (10<B <16) (5) x = a (0 < a < 10) (2) B地点に集まるときのみ, 移動コストが最小となるようなcの値のうち,最も小さいもの は 最も大きいものは サ である。 (配点 15) (公式・解法集 6

回答募集中 回答数: 0
数学 高校生

58.2 記述ってこれでも問題ないですよね??

388 00000 基本例題 58 条件付き確率の計算 (2) … 場合の数利用 〔類 センター試験] 3個のさいころを同時に投げ, 出た目の最大値を X, 最小値をYとし,その差 X-Y を Z とする。 (1) Z=4 となる確率を求めよ。 (2) Z=4 という条件のもとで, X=5となる条件付き確率を求めよ。 A13EUS SEDI p.385 基本事項① ) 指針▷ (1) 1≦X≦6, 1≦Y≦6 から, Z=4 となるのは, (x,y)=(5,1),(6,2)のときである。 この2つの場合に分けて, Z =4 となる目の出方を数え上げる。 (2) Z=4 となる事象をA,X=5となる事象をBとすると, 求める確率は条件付き確率 PA(B) である。 (1) でn(A), n(A∩B) を求めているから PA (B)= を利用して計算するとよい。 この場合の数は ACASSUNG 解答 BOA (1) Z=4 となるのは, (X,Y) = (5,1), (62) のときである。 Z = X-Y=4から [1] (X,Y)=(51) のとき X=Y+4 このような3個のさいころの目の組を、目の大きい方から 順にあげると,次のようになる。 (5,5,1),(5, 4,1),(5,3,1), (5, 2,1), (5,1,1) n(ANB) n(A) 3! 2! POINT ←全体をAとしたときの A∩Bの割合 [(8/8)=(8) 3! +3×3! + =24 2! [2] (x,y)=(62) のとき [1] と同様にして, 目の組を調べると (6, 6, 2), (6, 5, 2), (6, 4, 2), (6, 3, 2), (6, 2, 2) この場合の数は 3! 2! 3! +3×3! + =24 2! 条件付き確率はPA (B) = ank 以上から, Z=4 となる場合の数は 48_2 よって, 求める確率は 63 9 (2) Z=4 となる事象をA, X=5となる事象をBとすると, 求める確率は PA (B)= n(ANB) 24 1 n(A) 48 2 24+24=48 (通り) P(A∩B) P(A) d X≦6 であるためには = 1 または Y=2 組 (5,5, 1) と組 (5,1,1) については,同 じものを含む順列を利用。 (同じものがない1個の数 が入る場所を選ぶと考えて, 3C1 としてもよい。) 他の3組については順列を 利用。 PA(B) P(A∩B)n(A∩B) P(A) ħP₁(B)= n(A^B) 練習 958 の積を5で割った余りをYとするとき、次の確率を求めよ。 (1) X = 2 である条件のもとで Y=2である確率 IZ -?である条件のもとでX=2である確率 n(A) $3G3MS n(A) で計算 2個のさいころを同時に1回投げる。 出る目の和を5で割った余りを X, 出る目 (m 395 EX43」

回答募集中 回答数: 0