学年

教科

質問の種類

数学 高校生

線を引いている①の式が分からないのと、右側にある丸の印を付けている30というのが分かりません、。なんでtan90度ではないんですか? 解説お願いします🙇‍♀️

226 基本 例 135 測量の問題 00000 | 目の高さが1.5mの人が,平地に立っている木の高さを知るために, 木の前方の |地点Aから測った木の頂点の仰角が30℃, A から木に向かって10m近づいた地 点Bから測った仰角が45°であった。 木の高さを求めよ。 指針 p.222 基本事項 2 基本 133 基本 ① 与えられた値を三角形の辺や角としてとらえて,まず図をかく。そして、 ② 求めるものを文字で表し, 方程式を作る。 特に、直角三角形では,三平方の定理や三角比の利用が有効。 ここでは,目の高さを除いた木の高さを求める方がらく。 基本 例題 1 右の図の△AF に垂線 ADI AD=DC, AI (1) 線分AD (2) sin 75°, fast 点Aから点Pを見るとき, AP と水平面とのなす角を, PがAを通る水平面より上にあるならば仰角といい 下にあるならば俯角という。 ぎょう A 仰角 俯角 三角比 特に, の比を (1)ㄥ 形 き CHART 30° 45° 60°の三角比 (2) -30° 三角定規を思い出す 2 45° √3 (1) △ 60 45% 解答 ZA △A 右の図のように, 木の頂点を D, 木の根元をCとし 解答 目の高さの直線上の点を A', B', C' とする。 h=(10+x)tan 30° このとき, BC=x (m), C'D=h(m) とすると ① h=xtan45 A' 30° B45° ②から 1.5ml x=h これを①に代入して A 10m B xm 10+h h= ゆえに √3 (√3-1)h=10 ①,②はそれぞれ 10 よって h=- √√3-1 10(√3+1) (√3-1) (√3+1) 10(√3+1) tan 45°= =5 (√3+1) 2 したがって、求める木の高さは、目の高さを加えて 5(√3+1)+1.5=5√3+6.5(m)(*) 注意 この例題のような, 測量の問題では, 「小数第2位 を四捨五入せよ」などの指示がある場合は近似値を求 め、指示がない場合は計算の結果を、 そのまま (つま 上の例題では根号がついたまま) 答えとする。 tan 30°= /30° 45% 60°の三角比の 値は覚えておくこと。 (*) 31.73から 5√3=8.65 よって、538.7 とすると 5√3+6.58.7+6.5 =15.2(m) √3 tan 30% h h から ここで x tan45°=1 10+x’ 練習 海面のある場所から崖の上に立つ高さ30mの灯台の先端の仰角がG 135 よ よく L. △ か <カ (2) 練習 ③ 136

回答募集中 回答数: 0
数学 高校生

なぜこれでAP:PLをもとめられないのでしょうか

化学重 本題 が1に等しい △ABCにおいて,辺BC, CA, AB を 2:1 に内分する点をそ 84 メネラウスの定理と三角形の面積 M,Nとし, 線分AL と BM, BM と CN, CN と AL の交点をそれ それL, P Q, Rとするとき P:PR:RL= AP: APQR ・イ :1である。 の面積は である。 (1) ΔABL と直線CN にメネラウス→LR: RA これらから比AP: PR RL がわかる。 △ACL と直線BM にメネラウスLP:PA (2) 比BQ:QP: PM も (1) と同様にして求められる。 ABCの面積を利用して,△ABL→△PBR → APQR と順に面積を求める。 00000 [類 創価大] ・基本 82,83 P UM N Q R B 2. L1C CHART 三角形の面積比 等高なら底辺の比, 等底なら高さの比 AABL と直線 CN について, メネラウスの定理により B CA 定理を用いる三角形と aa3M 線を明示する。 AN BC LR =1 NB CL RA N P3 A Q RO 2 3 LR LR すなわち . =1 1 1 RA B 2 RA =1 aa よって LR:RA=1:6 ① △ACL と直線 BM について, メネラウスの定理により 2 AM CB LP 13 LP MC BL PA =1 すなわち LP =1 22 PA PA -1 4 3 よって LP:PA=4:3 ② T AC 2 3 ゆえに A 別解 △ABP= -△ABL= 3 7 ①②から AP:PR: RL=3:イ3:1 (2)(1) と同様にして, BQ:QP:PM=3:3:1から AABL= -△ABC= APQR = 3 32 • 7 3 A -AABC= ABCQ, CAR も同様であるから △PQR=(1-3×27/3) ABC="/17 7 SLS AP:PR: RL HA =l:min とする DE n 1 m+n 2 3 2 APBR= -△ABL= 1+m 6' 2 3' 7 A から l=m=37 -△PBR= 1/1 7 4 L, M, Nは3辺 比に内分する点で ら、同様に考えら BAAD する点を

未解決 回答数: 1