学年

教科

質問の種類

数学 高校生

70. AQ:QD=AE:EC=1:1より 点Qは線分ADの中点であるとはどういうことですか? Aから引く直線BCと接する線分はどれも A◯:◯D =AE:ECになるのでは?と思ったのですが (写真2枚目のように)

E E 基本例題10 重心であることの証明 △ABCの辺BC, CA, ABの中点をそれぞれD, E, F とし,線分 FEのEを越 える延長上にFE = EP となるような点Pをとる。 このとき, Eは△ADPの重 心であることを証明せよ。 結論からお迎えの方針で考える。 指針 例えば、右の図で,点G が △PQR の重心であることを示すには, QS=RS (Sが辺 QR の中点), PG:GS =2:1 となることをいえばよい。 この問題でも, 点E が ADPの中線上にあり, 中線を2:1に内分す ることを示す。 S 平行な線分がいくつか出てくるから,平行線と線分の比の性質や中点連結定理 を利用。 CHART 重心と中線 2:1の比辺の中点の活用 解答 △ABC と線分 FE において, 中点連結 定理により =1/BC 2 FE//BC, FE= OHITHJAUS 280 ADとFE の交点を Q とすると QE//DC B また,FEEP であるから 0 F ① ② から、点Eは△ADP の重心である。 A Q/ E D よって AQ:QD=AE:EC=1:1 ゆえに,点Qは線分 AD の中点である。 よって, ADC と線分QE において, 中点連結定理により =1/12DC=1/12×1/2/BC=1/2BC C ・P PE:EQ=FE:EQ=1/2BC://BC=2:1…. ② 検討 重心の物理的な意味 |密度が均一な三角形状の板の重心Gに,糸をつけてぶら下げると, 板は地面に水平につり合う。 基本69 HAA <DC=1/2/BC 問題の条件。 G <中点連結定理 中点2つで平行と半分 平行線と線分の比の性質。 R G 411 3章 0 三角形の辺の比、五心 10 る。

未解決 回答数: 1
数学 高校生

70. 4行目(ADとFEの交点を...)から6行目(AQ:QD=1:1)までの工程は中点連結定理を用いて考えたらこうなるのですか?

F D 5 〇 重心。 - 線分 FE E 通である。 STAHO を見つけ出す。 C で共通。 BC : BD で共通。 =EB : FB えに」を表す D 70 重心であることの証明 基本例題 00000 △ABCの辺BC, CA, ABの中点をそれぞれD, E, F とし,線分 FEのEを越 える延長上にFE = EP となるような点Pをとる。 このとき, Eは△ADPの重 心であることを証明せよ。基本69) 指針 結論からお迎えの方針で考える。 4590TY HOCAM (5) 例えば、右の図で,点GがPQR の重心であることを示すには, QS=RS (Sが辺 QRの中点), PG:GS=2:1 MAOSTUME となることをいえばよい。 この問題でも、点Eが△ADP の中線上にあり,中線を2:1に内分す ることを示す。 CHART 重心と中線 2:1の比 辺の中点の活用 ME S 平行な線分がいくつか出てくるから,平行線と線分の比の性質や中点連結定理を利用。 解答 △ABC と線分 FE において, 中点連結 定理により FE//BC, FE= BC ADとFE の交点をQとすると QE // DC 2 Po また, FEEP であるから B ① ② から、点Eは△ADPの重心である。 さ F Q E よって AQ: QD=AE:EC=1:1 ゆえに,点Qは線分 AD の中点である。 よって, △ADC と線分 QE において, 中点連結定理により 8/1/2DC=1/12×1/2/BC=1/BC D C •P PE:EQ=FE: EQ=1/23BC: BC 2:1... ② <中点連結定理 中点2つで平行と半分 84DC= 1/2BC MOSHA 検討 重心の物理的な意味 - 密度が均一な三角形状の板の重心Gに,糸をつけてぶら下げると, 板は地面に水平につり合う。 G 平行線と線分の比の性質。 問題の条件。 R DRON R(S) 108. 411 3章 10 三角形の辺の比、五心

解決済み 回答数: 2
数学 高校生

チャートⅠAから 確率です なぜこの3つの分け方だけで答えが求められるのか分かりません 書き込んだものは考えなくていいのですか? 教えていただきたいです

D 基本例題 53 平面上の点の移動と反復試行 右の図のように、東西に4本, 南北に5本の道路がある。 地点Aから出発した人が最短の道順を通って地点Bへ 向かう。このとき,途中で地点Pを通る確率を求めよ。 ただし,各交差点で,東に行くか, 北に行くかは等確率 とし,一方しか行けないときは確率1でその方向に行く ものとする。 指針 求める確率を A↑→↑→↑P→→Bの確率は 2 × A→P→Bの経路の総数 A→Bの経路の総数 どの最短の道順も同様に確からしい場合の確率で,本問は道順によって確率が異なる。 1.1 1.5 例えば,A↑↑↑ → → P→→Bの確率は 1/2·1·1·1·1= 2 2 から, 3 1/1/2×1 ×1×1=(1/21)= (1) =18 |= 解答 右の図のように,地点 C, D, C', D', P'をとる。 P を通る道順には次の3つの場合があり,これらは互いに排反で ある。 A³C²> D'→D → P [1] 道順A→C'′ → C → P sp²-p この確率は [2] 道順A→D→D→P この確率は DC (1/2)(12/2)×1/1×1=3(1/12)=1/6 3C1₁ A→D→P′→P 3 + + 8 16 [3] 道順A→P′'′ → P 5 6 この確率は(1/2) 2012/2)×1/12 = 6 (1/27) 2 ( 6( 1²2 = 32 よって, 求める確率は 6 32 5C22 C2 7C3 ( 22 したがって,Pを通る道順を, 通る点で分けて確率を計算する。 左 JHON SESONA (S) 16 1 1 1 1 1 00000 1 32 2 P 基本52 saugma とするのは誤り!これは, 8 12/27 - 12/24 - 12/31 · 1 · 1 = 13/12/2 重要 54 北4 C' D' P' OPCOD PIAHO 72-²)) - (1- A これは考えないでいいのか? M [1] ↑↑↑→→と進む。 [2] ○○○↑→と進む。 ○には,1個と12個が入 [3] ○○○○↑ と進む。 ○には、2個と 12個が入 いように

未解決 回答数: 1
数学 高校生

2番のa≠0の時です。 頭の中でa<0かつD≦0でなければならないと想像した時に これを文章化することができませんでした。 解答を見ればこのような書き方をすればいいのかと分かったのですが記述に必要十分条件と書くのに懸念があります。 どのような時に必要十分条件と書けばいいんで... 続きを読む

180 00000 基本例題 113 絶対不等式 (1) すべての実数xに対して, 2次不等式x+(k+3)x-k> 0 が成り立つような 定数kの値の範囲を求めよ。 (2) 任意の実数xに対して,不等式 ax^²-2√3x+a+2≦0 が成り立つような定 数αの値の範囲を求めよ。 p.171 基本事項 ⑥ 「演習129 指針 2次式の定符号 2次式 ax2+bx+cについて D=62-4ac とする。 ·········!」 常に ax2+bx+c>0⇔a> 0, D < 0 常に ax'+bx+c<0⇔a<0, D<0 (1) x²の係数は 1 (正) であるから, D<0が条件。 常に ax2+bx+c≧0⇔a> 0, D≦0 常に ax²+bx+c≦0⇔a<0, D≦0 (2) 単に「不等式」 とあるから, α=0 (2次不等式で ない)の場合とa≠0)の場合に分ける。 [補足 ax²+bx+c>0 に対して, a=0 の場合も含め ると,次のようになる。 解答 (1) x²の係数が1で正であるから 常に不等式が成り立 つための必要十分条件は、 2次方程式 x2+(k+3)x-k=0 の判別式をDとすると D<0 D=(k+3)^-4・1・(-k) =k²+10k+9= (k+9)(k+1) であるから, D<0より (k+9)(+1) < 0 ゆえに -9<k<-1 + 常に ax+bx+c>0⇔a=b=0, c>0; または α > 0, D < 0 + [a>0, D<0] a=0のとき, 2次方程式 ax²-2√3x+α+2=0の判別 式をDとすると,常に不等式が成り立つための必要十 分条件は a<0 かつ D≦0 (*) 2=(-√3)a(a+2)=-a²-2a+3=-(a+3)(a-1) であるから, D≦0 より よって an-3, 1≦a 「すべての実数x」または「任意の実 数x」 に対して不等式が成り立つと は, その不等式の解が, すべての 数であるということ。 (1) の D<0 は, 下に凸の放物線が常 にx軸より上側にある条件と同じ。 (2) a=0のとき, 不等式は-2√3x+2≦0 となり、 例え (*) グラフがx軸に接する, また ばx=0のとき成り立たない。 はx軸より下側にある条件と同じ であるから, D< 0 ではなく D≦0と する。 (a+3)(a-1)≧0 a<0 との共通範囲を求めて すべての実数について、 2次不等式 ax+bx+c>0) が成り立つ ⇔2次関数y=ax²+bx+cのグラフが常にx軸より上側にある a> (下に凸) かつ D=6-4ac < 0 (x軸との共有点がない) nor [a < 0, D<0] a≤-3 Ne + [a> 0, D<0]

未解決 回答数: 1