学年

教科

質問の種類

数学 高校生

数学1数と式です。 イがわかりません。教えてもらいたいです。

色のカードが (全 ) 問答 第5回 数学Ⅰ, 数学A 赤色の ずつかれている。 第1問(配点 30) 並べたカードに C て同じ数字が醸する [1] 直線道路沿いの五つの地点に家が並んでいる。これら5軒の家に荷物を届ける とき、道路沿いのどこか1か所に車を停めて配りたいが,できるだけ移動距離を 短くすることを考える。 図1のように, 5軒の家の地点を順に点A, B, C, D, E, 車を停める地点 を点Pとして,L=PA+PB+PC+PD+PE が最小になる点Pの位置につい て考察しよう。 このうち、となる姿 A B P C D E 図1 223, 1, 10 Fath 太郎さんと花子さんが,点Pをどこにとればよいかについて話している。 太郎 : 点Pの位置は2点A, Eの真ん中でいいんじゃないかな。 花子:そうかな。図上で点Pの位置を動かして, Lの値がどのように変化す るか調べてみようよ。 * = ぞれ連続する 例えば、図2のように,点Pを2点B,Cの間で右に距離d(d>0) だけ動かしてみる d信しない並べ方は A BP CD C D E 図2 すると,PA+PB は 2d だけ増加して,PC+PD+PE は 3d だけ減少 するから,結局, Lの値はdだけ小さくなるね。 太郎:点Pを2点 B, C の間で右に動かすときは,花子さんの言ったことが 成り立つね。 点Pを点Cより右側の位置で動かすとどうなるかな。 花子: さっきと同じように考えてみようよ。 (第5回1) (数学Ⅰ 数学A 第1問は次ページに続く。)

未解決 回答数: 1
数学 高校生

(3)についてです。 私は図に三角関数のグラフを書いてまとめようとしたのですが、 ①写真の2枚目と3枚目のように範囲を決める理由がわかりません。求めなくてもいけるのでは?と思って私はやらなかったのですが、必要な理由を教えてください。 ②『かつ』と『または』が選択肢にあっ... 続きを読む

オ エ (2) 次の図の斜線部分 (境界を含む) を表す不等式は, I (n=0, ±1, 2, ...) と表すことができ、これを三角関数を用いて表すと, オ である。 3 12 0 ーπ 27 -3 については、最も適当なものを、次の①~⑦のうちから一つ選べ。 © (n-1) x ≤ y ≤ n nπ ①nx ≤ y ≤ (n+2/21) π ② (n-1) y ≤NT ③ ni My ≦ (n+1) ④ (2n-1/12) rsys2n (5 2nzsys (2n+1/2)π (2n-1) ≤ y ≤ 2nn 2nny(2n+1)л については、最も適当なものを、次の①~⑦のうちから一つ選べ。 I sin y y ≤ sin x sin y ≤ 0 sin zy ≤0 x≧ siny y ≥ sin x sin y ≥0 sinny O (数学Ⅱ 第1問は次ページに続く。) (3)二つの不等式を組み合わせることで、一つの不等式だけを用いたときよりも複雑 な模様をつくることができる。 次の図の斜線部分 (境界を含む) は, を図示したものである。 を満たす点(x, y) の存在する範囲 y I 27 カ については、最も適当なものを、次の①~⑦のうちから一つ選べ。 O O sinx0 かつ sin y ≤0 ① sinx ≦ 0 または sin y ≦0 sin≦0 かつ sin y ≧ 0 ③ sinx≦0 または siny≧0 sin≧0 かつ siny ≦0 sinx≧0 かつ sin y ≧ 0 sinx≧0 または siny 0 sinx≧0 または sin y ≧0 (数学Ⅱ 第1問は次ページ

解決済み 回答数: 1
数学 高校生

(2)で必要条件と十分条件で符号が変わるのが分かりません😭教えて頂けたら幸いです。

■ a, b は実数で,a>0 とする。 実数ェに関する次の条件 p. gを考える。 p:|ax+b-3|<2 g-1<x<3 不 2+√61-2+√3 1 <-1④ >1 -7+4/3-7+√48 ...... オカ キク ( 5-h (2)a=2とする。 次の ス セ に当てはまるものを、下の①~⑤のうちから 一つずつ選べ。 ただし、解答の順序は問わない。 pgに関して正しいものは、 ス である。 アドバイス 株式 を入れ換えても、全く同じ式になる式を対 式という。 例えばなどはと を入れ換えても同じ式になるから、の対称 式である。 at beba の基本対称式という。 ここで重要なのは、 P|1|17 <<³ Qしょ-1<<3) (1) 条件がの十分条件となるのは、 すなわち、 PCQ 「pe」が真であるとき すべての対称式は基本対称式を用いて表せる ということである。本間において、12/2. より、 a. 基本式である。よって、1/3は 20121122 の曲が得られ -15853 のときである。 よって 22 [のを求められる。 ↓ 5- ≤3 -15のとき.pはりの十分条件であり。 <-1または3<ものときは々の十分条件 ではない。 bの値にかかわらず, pはgの十分条件になる。 bの値によって,pgの十分条件になることもあればならないこと もある。 bの値にかかわらず,pはgの十分条件にならない。 bの値にかかわらず, pはgの必要条件になる。 bの値によって, pqの必要条件になることもあればならないこと ある。 bの値にかかわらず, pはgの必要条件にならない。 (数学Ⅰ・数学A第1問は次ページに続く。) 式の特徴を見抜く力を養い。 典型的な式の扱い にしよう。 ゆえに、 は正しく は正しくない。 条件』がの必要条件となるのは、 命題「q p」が真であるとき (2) すなわち、 出題のねらい QCP 不等式で表された実数の条件について、 同性、 十分条件の関係を考えられるか。 milar+b-3K<2 となるとます。 より 023 かつ b のときである。 かつ

解決済み 回答数: 1
数学 高校生

(3)のオレンジで囲われたところが分かりません。🟰の意味を教えてください🙇‍♀️

(注)この科目には、 選択問題があります。 (3ページ参照】 第1問 (必答問題) (配点 30) (1)を実数の定数とし、二つの等式 z³-(4a-6)x+3a²-4a-7=0 ------ 12-al-5-a +(34-7)(9) を考える。 (1) は a 52-(4-6) (307) (税別) x 246 -73 (3) ①と③をともに満たす負の実数ェが存在するの のときである。 (エーロー a+ と変形できる。 22 (7 (2) 下の カ には、次の①~⑤のうちから当てはまるもの を一つずつ選べ。 ただし、 同じものを繰り返し選んでもよい。 @ ③ M 0 ②をたす実数ェが存在するようなαの条件は エ ② M 6 であり。 ②を満たす負の実数ェが存在するようなαの条件は である。 1-5+α (数学Ⅰ・数学A 第1間は次ページに続く。) 第1問 数と式、集合と命題 2次関数 〔1〕 出題のねらい 文字係数の2次式の因数分解ができるか。 ・絶対値記号を含み, 文字定数を含む方程式の解を調 べられるか。 解説 2 (4α-6)x+342-44-7=0 ...... ① |x-al-5-a (1) ①の左辺を変形して, ......② x²-(4a-6)x+(a+1)(3a-7)=0 {z_(a+1)}{z-(34-7)}=0 (x-a-1)(x-34+7)=0 ......ア, イ, ウ (2)②を満たす実数xが存在するのは, 5-a≥0 すなわち. a≤5 (......(3) ······オ エ のときで,このとき②より. x-a ±(5-a) x-a=5-α, -5+α より . x=5, 2a-5 となるから, ②を満たす負の実数xが存在するa の条件は, 2a-5<0 すなわち. a (これはas5を満たす。) ......キク (0) (3) ①を満たすæは、 x=a+1, 3a-7 よって、 ①、②をともに満たす負の実数xが存 在するのは, (i) a+1=2a-5 a< または, (i) 3a-7=2a-5 >a< のいずれかの場合である。 (i)のとき, α+1=24-5より. a=6

解決済み 回答数: 1
数学 高校生

(2)のオレンジで囲われたところが分かりません。どなたか解説お願いしたいです

(注)この科目には、 選択問題があります。(3ページ参照。) 第1問 (必答問題) (配点 30) 〔1〕 αは負の数であり a を満たす。 (1) a²+P であり Q2. であるから + である。 Blod as b qila am ol lasbi of rfil ei. エ 第1問 数と式、集合と命 2次関数 (2) (1) 出題のねらい 対称式の計算の処理ができるか。 ・平方根の計算が正確にできるか、また平方根の側の 範囲を調べられるか。 解説 <0> (1) a²+(0)+20 ここで。 =(√2)+2 ----- (0+1)(0) (+1)+20 4-4-26 あるから、 a+1--16 よって, bona mile ebuit 0 (2) an-a2<a'n-1 を満たす最小の整数nはn= キクである。 (数学Ⅰ・数 √2+√6-2+√3 an-a³<a'n-1 ala-1)<a-1 ここで、 より -2+√3>1 アドバイス 対称式 a'<1 すなわち、 9110 また。 a'>0 よって、より "> であり。 ...... (2+√3)-7+1/3-7+√18 であるから。 >7+√48 ここで。 より。 6</48<7 13<7+√18<14 よって、求めるは、 14 13 7+ 48 14 数を入れ換えても。 全く同じ式になる 式という。 例えば などは を入れ換えても同じ式になるから、、 式である。 + b. ha. の基本対称式 ここで重要なのは、 すべての対称式は基本対称式を用いて ということである。 本間において.. 1の式であり、小( 1の基本対称式である。 よって、 at12 を用いて表され、1/3のが at. 22 [の他を求められる。 式の特徴を見抜く力を養い。 典型的 に しよう。 (2) 出題のねらい 不等式で表された実故の条件について 条件十分条件の関係を考えられるか 解説 par+b..3|<2

解決済み 回答数: 1