数学
高校生
解決済み

(2)で必要条件と十分条件で符号が変わるのが分かりません😭教えて頂けたら幸いです。

■ a, b は実数で,a>0 とする。 実数ェに関する次の条件 p. gを考える。 p:|ax+b-3|<2 g-1<x<3 不 2+√61-2+√3 1 <-1④ >1 -7+4/3-7+√48 ...... オカ キク ( 5-h (2)a=2とする。 次の ス セ に当てはまるものを、下の①~⑤のうちから 一つずつ選べ。 ただし、解答の順序は問わない。 pgに関して正しいものは、 ス である。 アドバイス 株式 を入れ換えても、全く同じ式になる式を対 式という。 例えばなどはと を入れ換えても同じ式になるから、の対称 式である。 at beba の基本対称式という。 ここで重要なのは、 P|1|17 <<³ Qしょ-1<<3) (1) 条件がの十分条件となるのは、 すなわち、 PCQ 「pe」が真であるとき すべての対称式は基本対称式を用いて表せる ということである。本間において、12/2. より、 a. 基本式である。よって、1/3は 20121122 の曲が得られ -15853 のときである。 よって 22 [のを求められる。 ↓ 5- ≤3 -15のとき.pはりの十分条件であり。 <-1または3<ものときは々の十分条件 ではない。 bの値にかかわらず, pはgの十分条件になる。 bの値によって,pgの十分条件になることもあればならないこと もある。 bの値にかかわらず,pはgの十分条件にならない。 bの値にかかわらず, pはgの必要条件になる。 bの値によって, pqの必要条件になることもあればならないこと ある。 bの値にかかわらず, pはgの必要条件にならない。 (数学Ⅰ・数学A第1問は次ページに続く。) 式の特徴を見抜く力を養い。 典型的な式の扱い にしよう。 ゆえに、 は正しく は正しくない。 条件』がの必要条件となるのは、 命題「q p」が真であるとき (2) すなわち、 出題のねらい QCP 不等式で表された実数の条件について、 同性、 十分条件の関係を考えられるか。 milar+b-3K<2 となるとます。 より 023 かつ b のときである。 かつ

回答

✨ ベストアンサー ✨

符号ではなく、大小関係が変わるのはなぜか、
ということですね
言葉が不正確だとこちらが誤解して
変な回答をしてしまう恐れも高まります…
P⊂QかQ⊂Pかの違いです

この回答にコメントする
疑問は解決しましたか?