学年

教科

質問の種類

数学 高校生

この問題教えて欲しいです! 有効数字が全然分からないです

1. 次の文中の( )に適当な言葉や数値, 記号を書き入れなさい。 国際的な単位の取り決めで定められた, 長さ 質量, 時間, 電流, 温度、物質量, 光度など7種の量を (①) といい、それぞれに対応して定められた単位を (2) という。 また、速さやエネルギー, 電圧など, (2) 組み合わせた単位を (3) という。 物理量は, 数値 × (4) で表す。測定値として意味のある数字を (5) という。 精度のよい測定ほど、 有効数字の桁数が (⑥)。 科学で扱う数値を, 4×10 の形で表したものを (7) という。ただし (8) A< (9) である。 例えば, 測定値 185mm は, 有効数字 (⑩) 桁で, 科学表記で は (①)と表す。 測定値 185.0mm は, 有効数字 (12) 桁で, 科学表記では (13) と表す。 測定値 0.0185m は 有効数字は (14) 桁 (15) と表す。 測定値どうしの掛け算・割り算では、 有効数字の桁数の最も ( 16 ) ものに、計算結果の桁数をそろえる。 例えば, 4.23cm (3桁)×6.3cm (2桁)=26.649 の計算の場合、 (17) 桁 にそろえて (18) cm 2。 また, 測定値どうしの足し算 引き算では, 有効数字の1番下の位が最も大きいも のに計算結果の位をそろえる。 例えば4.23m (小数第2位) +1.567m (小数第3位) 5.797mの計算の場 合, 小数第 (19) 位にそろえるので (20) となる。 ① 基本量 ② 基本単位 ③組立単位 11 8. (13) ⑤ 10 10 17 (18) 19 20

回答募集中 回答数: 0
数学 高校生

(1)ではなぜ余りの部分をax²+bx+c にしないのかと、途中の式変形を教えていただきたいです。 (2)ではなぜ3k,3k+1,3k+2と場合分けしているのかを教えていただきたいです。

28 第1章 式と証明 問 9 整式の割り算(3) m, nは正の整数とする。 (1) 3m +1 を 1 で割ったときの余りを求めよ。 (2) +12+x+1で割ったときの余りを求めよ。 これは=0 (n (室蘭工業大) 以上より、 + n=3k(k → 精講 (2) (1)において -1=(x-1)(x2+x+1) より, n=3kのとき は、処理済です. あとは, n=3k+1,3k+2 と場 合分けして調べていきましょう. (1) cam=(x3-1+1)^ = (X+1)" とみて展開 (1) まずは3m を -1で割るこ解法のプロセス とを考えます. n=3k+1 n=3k+2 (2)n=3k, 3k+1, 研究 (2) 3k+2 と場合分けする 解答 (1) x3m+1=(x3)"+1=(x-1+1)"+1 X=x-1 とおいて二項展開すると x3m+1= (X+1)"+1 ={(Xの1次以上の整式)+1}+1 =X(Xの整式)+2 =(-1) (zの整式) +2 よって, x3m+1 を-1で割った余りは 2 (2)(1) より が正の整数のとき これは 二項定理より た余り (X+1)m =mCoX™•10+mCiX~1.14+ この ...+mCmX1" すなわ よい 3k+1=(x-1)(x の整式) +2 である. =(x-1)(x²+x+1)Q(x)+2 (Q(x)はxの整式) n=3k のとき, "+1 を x'+x+1 で割った余りは2である. n=3k+1 のとき,①の両辺にxをかけて, 変形すると 3k+1+x=(x2-x)(x²+x+1)Q(x)+2x 3k+1=(x2-x)(x²+x+1)Q(x)+m ・② 3k+1+1=(x2-x)(x'+x+1)Q(x)+x+1 これはk=0 (n=1) のときも成り立つ. n=3k+2 のとき,②の両辺にxをかけて, 変形すると mak+2=(x-x2)(x'+x+1)Q(x) +x m3k+2+1=(x-x2)(2+x+1)Q(x)+x2+1 =(x-1)(x'+x+1)Q(x)+(x²+x+1)-x で

回答募集中 回答数: 0
数学 高校生

解説お願い致します🙇‍♀️🙇‍♀️

(税抜) =2回+ +35の値 +7)(京都) 2章平方根 みかさんは大小2匹の犬を飼っています。 みかさんとお兄さんは、2匹の犬のため に2つの犬小屋をつくることにし、次のような犬小屋づくりのプランを考えました。 正方形の形をした庭に,2つの犬小屋 A,Bを下の図のようにつくる。 ・犬小屋は2つとも正方形の形にし, それぞれの面積を2m,8mとする。 ・正方形の庭の犬小屋以外の部分は、2匹の犬がいっしょに遊べるスペースにする。 遊べるスペース 2つの犬小屋の1辺の長 |小屋 B さの和が 正方形の庭 の1辺の長さになるよ。 小屋 A 8m² 2m² 式の計算 3億 2次方程式 2章 平方根 るとき, (1) みかさんとお兄さんは, 遊べるスペースの面積がどれくらいになるか知るために, まず 正方形の庭の面積を求めることにしました。 ① みかさんは次のように考えました。 遊べるスペース の値を (鹿児島) 「正方形の庭は, 2m² の正方形9個分になるから, 正方形 庭の面積は,2×9=18(m²) になる。」 小B 2. 18m² 下線部の考えがわかるように, 右の図に線をかき入れなさい。 小屋A 2m² お兄さんは,正方形の1辺の長さから考えました。 次のお兄さんの考えの あてはまるものを書き入れ, 続きを書いて完成させなさい。 に (三重) つにな お兄さんの考え:2mの正方形の1辺の長さは6.2m, また,8mの正方形の1辺の長さは3225m だから [^2+22=3.2 正方形の庭の面積は 32×4) すると になるから 204128:208 したがって正方形の庭の面積は、(3)^2=18m² (2) 正方形の庭の面積をもとに,遊べるスペースの面積を求めなさい。 小さい正方形に分けても、計算で 求めても、同じ結果になるね! 18-(2+8) =18-10 8 m 3年 教 4

回答募集中 回答数: 0
数学 高校生

青線部の所の意味が分かりません!

(?) (2)) 基本 例 20 極限の条件から数列の係数決定など 00000 ) 数列 {an) (n=1, 2, 3, .....) が lim (3n-1)α=-6を満たすとき. limna である。 918 [類千葉工大] lim(n+an+2-√n-n)=5であるとき、定数αの値を求めよ。 p.34 基本事項 2.基本 18 針 (1) 条件 lim (3n-1)a=-6を活かすために, na-3n-1) α × n 変形 3n-1 77 数列 3n-1 は収束するから、次の極限値の性質が利用できる。 liman=α, limbn=β⇒lima,b=aβ (a,βは定数) 700 818 (2) まず 左辺の極限をαで表す。 その際の方針は p.38 基本例題18 (3) と同様。 41 (1) nan=(3n-1) anx n であり Ana を収束することが 3n-1 lim(3n-1)an=-6, n 1 1 lim =lim わかっている数列ので 表す。 72-00 3n-1 12-00 1 3 3 ? n 数 2 2章 数列の limnan=lim(3n-1)anxlim よって 72100 12-00 1 =(-6). =-2 2) lim(√n2+an+2-√n²-n) n100 (n+an+2)-(n²-n) =lim n11 √n²+an+2+√n²-n =lim 718 (a+1)n+2 √n² +an+ 2 + √√n ² -—n a n (a+1)+ 2 2 n 1+ + + 1- n² n n-co 3n-1 =lim a+1 N18 1 2 n a+1 よって、条件から =5 2 したがって a=9 mil-mila 極限値の性質を利用。 分母分子に √√n²+an+2+√√n²-n を掛け、分子を有理化。 分母分子をnで割る。 n0 であるから n=√n² αの方程式を解く。 次の関係を満たす数列 {az} について, liman と limnan を求めよ。 ア) lim (2n-1)an=1 12-00 81U (イ) lim n→∞ 2an+1 an-3 =2 n→∞ lim(√m²+an+2-√n²+2n+3)=3が成り立つとき, 定数 α の値を求めよ。

回答募集中 回答数: 0