学年

教科

質問の種類

数学 高校生

なぜ、直線Mにおいての任意の複素数をZと表すことができるんですか??直線Lの方でもZが使われてて違うものなのになぜ同じ文字でおけるのか教えて欲しいです!!

B(β) z-a z-a よって, 7-B Y-B. Think 例題 C2.36 垂線の方程式,垂心 **** 複素数平面において, 単位円周上に異なる3点A(a),B(β),C(y) を 定める. ことを証 (1) 点Aから直線 BC に垂線lを引くとき, この垂線ℓ上の任意の点 D1S P(z)について、z-a=By (2-2) が成り立つことを証明せよ。 (2) △ABCの垂心を α, β, y で表せ. 考え方 (1) 点A(a),B(3), C(y), P(z) について,|a|=|β|=|y|=1 解答 APLBC または z=a z-a (山形大改) (2) 点Bから直線CAに垂線を引くとき,この垂線上の任意の点Q (ω) について (1) 1-1が純虚数または01-8=-1 と同様の式が成り立つ垂心は z=w となる複素数である. (1) Pは垂線上の点なので, AP⊥BC または z=α より z-a -は純虚数または 0 Y-B (A(α)→0(0) とな [B(B) → 0(0) るように平行移動す Pzると,P,Cは、それ A(α)ぞれ [P(z)→P (z-a) IC(y)→C^(-3) YA P 1. 0 -1 1 上にある であるから, C(r)-1=0 に移る. z-a z-a A 7-B Y-B 両辺に y-βを掛けて, P'(z-a) z-α=-(y-β) (28) Ala ・① ここで, 3点A(a),B(β), C(y) は単位円周上の点よ り |a|=|β|=|y|=1 C'(r-B) よって, zキαのと したがって,|a|=||=|y|=1 であるから, OP OC を aa=βB=yy=1より, 0のまわりに今だ a= B= y= .....2 a B' A (0-8)=0 け回転して実数倍 したベクトルより ②①に代入すると, Z z-a=-(y-β) =BY (1) 1 1α18 8 2- a a =(β-y)- B-Y B BY よって 00: Z ・③ となり、題意は示された「円 z-a=k cos a=k(cos +isin(7-8) RY=ki(7-8) は0でない実数) よって zaki (純虚数 または0) CES ③は直線lの方程式 (1+1を複素数で表現した 2

回答募集中 回答数: 0
数学 高校生

同一直線上にないというところから理解ができません。お願いします。

る. このことから,右のようにに、 長さより大きい△ 三角形の2つの辺の和は、残りの辺の長さより大きい という性質を利用することができないか考える m つまり,BD=PD, CE=PE となる △PDE が存在すること を示すことができれば, DE <BD+CE を示せそうである. 右の図のように、線分AM 上で, BM=CM=PM とな るように点Pをとる. 人式の証明 海形の or △BDM と △PDM において, ・成立条件2組の辺とその間の角が, それぞれ等しいので △BDM=△PDM a LA C a<b+c 9 /P E 点P と PD, PE の補助 線を引く. # BMCIA (0) Focus よって, BD=PD ...... ...① ∠DBM = ∠DPM ...... △CEM と △PEM において同様に考えて, △CEM=△PEM ML よって, CE=PE …③ ∠ECM=∠EPM …④ ②④より A A DE <BD+CE 三角形 成立条件:同一直線上 じゃない ∠DPM + ∠EPM= ∠DBM+ ∠ECM +28) = ∠ABC+ ∠ACB する。 3208AA =180°-∠BAC <180° [ + ] よって, 3点D, P, Eは同一直線上にない. したがって, △PDE は存在し,三角形の成立条 件より, DE <PD+PE ①③ 5より、 DE <BD+CE 3点が同一直線上にある とき, DE=BD+CE と なるので,そうならない ことを示しておく. 28 28 A 08 411 STAJ 不等式の満たす意味と同じ図形の性質がないか考える 内 214 (1) A て,辺BCの中点をMとする. -BA Farel 朱

回答募集中 回答数: 0
数学 高校生

解説の波戦引いたところなんでそうなるんですか🙇‍♂️ 引き算やからbの2乗の値によるんじゃないんですか?

〔1〕 関数f(x)=ax2 + bx + c について,y=f(x)のグラフをコンピュータ トを用いて表示させる。ただし、このコンピュータソフトでは、 じゅうぶん は十分に広い範囲で変化させられるものとする。 a. b. 2024年度 数学Ⅰ/本試験 67 (2) 次の操作 A. 操作 B. 操作 Cのうち,いずれか一つの操作を行う。 の部分と1<x<0の部分のそれぞれと交わる, 上に凸の放物線が表示 a,b,c の値をそれぞれ定めたところ, 図1のように, x軸の2くく STAIN 18.0 れた。 $100.0 PORLA BA+ 2008 20 18620 2100.0 操作 A 図1の状態からb.cの値は変えず, aの値だけを減少させる。 操作B 図1の状態からacの値は変えず,bの値だけを減少させる。 操作C 図1の状態からa, bの値は変えず, c の値だけを減少させる。 このとき、 操作 A, 操作 B. 操作 Cのうち 5 「不等式f(x)の解が、すべての実数となること が起こり得る操作は キ また 方程式f(x)=0は異なる二つの正の解をもつこと が起こり得る操作は ク rece.0 腰につ -1 0 2 3 4x ク の解答群 (同じものを繰り返し選んでもよい。) 2020 43112 19:0 2800.0 O ない ① 操作 A だけである 020 0108.0 020 ② 操作 Bだけである 586.0 T0 818.0 ③ 操作 Cだけである ATLA 00000 0002 0 (1) 図1の放物線を表示させる a,b,cの値について 操作 A と操作 Bだけである 0212.0 0 9023.0 ア 0. b 0. C ウ 0. b2-4 ac 0. 4a-2b+cl オ 0. a-b+c 0 ⑤ 操作 A と操作 Cだけである ⑥ 操作 B と操作 Cだけである 操作 A と操作 Bと操作 Cのすべてである である。 900 08.0 ager.o 8182.0 8108.0 0385.0 00 rara.o ア カ の解答群(同じものを繰り返し選んでもよい。) 図 813.0 0 ① COUT 2 08.0 Trot.o

回答募集中 回答数: 0