学年

教科

質問の種類

数学 高校生

これの答えを教えてください! 解答がなくて答え合わせができず、困ってます😭

196-197 ません) らない) つくるこ をすべき とつくる 続けら -199 だ) た) ―には の意 Knot 0 B30 XOT XEXERCISES ES 不定詞① (名詞用法) ⑤ [ ]内の意味に合うように、不定詞を使って英文を完成させなさい。 (1) Ann wants to know a teacher. [教師になる方法] (2) I know (3) Sam didn't know (4) I haven't decided that book. [どこで買えばいいか] [何を言えばいいのか lood to of DoverIO for Canada yet. [いつ出発すべきか] HOUSTI RISTONSSON 0 ⑥6 日本語に合うように( (1) 大切なのは、だれにもうそをつかないことだ。 The important thing (to /is/lie / not) to anyone. )内の語句を並べかえ, 全文を書きなさい。 16 SORTIR D aslood to fol a basi PASA d'evil of a to guidool a'ade z (2) 彼女があなたに怒っているのは当然だ。 It is (for / natural / you / angry with / be / to / her). om gloro base on avail I as 宝不さ玉会 3 om eqlar barst on (3) 妹が夜ふかしするのはめずらしいと思う。 (2) I think (unusual/my sister / stay / to / it's / for) upl late. 100 Lat of yu tead sillal terW HIS GJELDED MIROS PROSVITU TOGE (4) 私の長所は,決して落ちこみすぎないことだ。1000 ( My good point (be / to / depressed / is / too / never) of a bit uovo woH C (1) CONST 8 7 与えられた状況に合うように ( )内の語句を並べかえ, 全文を書きなさい。 ただし, 不要な語 句が1つずつ含まれています。 CD (1) 状況 医師から食生活を改めるよう言われたので、私は…。 I (not/ eating / eat / decided / a lot of /to/ sweets). 07-11-not eating/cated 13/2014 bro bothate 7 of advice. BORARSTO ENNUJAS LEBET CAS (2) 状況 ルーシーは最近悩みがあり、だれかに相談したいのですが・・・。 he of htpal chu Lucy doesn't (ask/know/who / for /to/ bawala a no ixats qode of CUS LOT- (3) 状況 最近, 地震が多いことを受け, ホームルームで先生がひと言。 We had better (what / case/ do / consider / to / of / in / doing) emergency. JON TOTO + ton en 08) a 16 red blor. I 8 [ ]内の語を参考にして~…に自由に語句を入れ, オリジナルの英文をつくりなさい。 れ、オリジナ 28-1-571-7 CD (1) 私が~することは簡単だ。 [easy / to ] (2)~(人)は私に….する方法を教えてくれた。[teach] 51

回答募集中 回答数: 0
数学 高校生

62.1 方程式の解の1つをwとしているので x^2+x+1=0をw^2+w+1=0としてしまうと 二次方程式の2つの解がwで表せるようになってしまうので条件 と合わなくないですか??

100 0000 基本例題 62 x+x+1で割ったときの余り f(x)=x80-3x40 +7 とする。 の1次式 (1) 方程式x2+x+1=0の解の1つをω とするとき, f (w) の値をωの1 表せ。 (2) f(x) を x2+x+1で割ったときの余りを求めよ。 基本 53.61 重要 55 指針f(x) は次数が高いので、値を代入した式を計算したり、割り算を実行したりするのは い。 ここでは,これまでに学習した、次の方針に従って進める 高次式の値 条件式を用いて次数を下げる 割り算の問題等式 A =BQ+R の利用。 B = 0 を考える ω'+ω+1=0 (1) は x2+x+1=0の解であるから これを用いてまずの値を求め、その値を利用してf(ω) の式の次数を下げる。 (2) 求める余りはαx+b と表されf(x) = (x2+x+1)Q(x)+ax+b これにx=ω を代入すると f(w)=aw+b Q(x) は商 解答 (1) は x²+x+1=0の解であるから よって w²=-w-1, w²+w=-1 w²+w+1=0 また, 80=3・26+2, 40313+1 であるから (*) w³-1 3a+s=(w-1)(w²+w+1)=0 eee²=(a-1)=-(ω^+c)=(-1)=1) から1としてもよい。 は1の虚数の3乗根であ る。 f(w)=w8⁰-3w40 +7=(w³) ²6 w²-3(w³) ¹³.w+7 =126.(-ω-1)-3・13・ω+7=-4ω+6 (2) f(x) を x2+x+1で割ったときの商をQ(x), 余りをax+b (a,bは実数) とすると 練習 f(x)=(x2+x+1)Q(x)+ax+b ω'+ω+1=0であるから (1) から -4w+6=aw+b α, b は実数は虚数であるから a=-4, b=6 したがって 求める余りは -4x+6 f(w)=aw+b が成り立つ。 次数を下げて1次式に。 [参考] a b c d が実数, zが虚数のとき ① a+bz=0 ⇔ α = 0 かつ b = 0 ② a+bz=c+dz ⇔a=c かつ b=d [証明] [①の証明] (←) 明らかに成り立つ。 (⇒) b=0 と仮定するとz=- :=-1 このとき a=0 b=0 よって ② の証明は、(a-c)+(b-dz=0 として上と同様に考えればよい。 なお、上の①②は、p.62の①②を一般の場合に拡張したものにあたる。 2018をx²+x+1 で割ったときの余りを求めよ。 → (2) A=BQ+R 割る式B=0 を活用。 下の参考② を利用。 S 左辺は虚数,右辺は実数となるから矛盾。 基 3次 定業 指針 解 -18 (-1) すな これ よっ 左辺 した 別解 fC (x 右 こ し xC * E C

回答募集中 回答数: 0
数学 高校生

80.1 めちゃくちゃ効率が悪いのでこれからは解説の通りに解きますが、余弦経理を用いたこの方法でも証明に問題はないですよね?

D D A' A 音にのばす C C 形の対辺の長さは DACEA) 2辺の長さの和は の長さより大きい TEAT 性質 <e, c<f b+c<d+e+f 基本例題80 三角形の辺と角の大小 (∠C=90°の直角三角形 ABCの辺BC上に,頂点と異なる点Pをとると, AP <ABであることを証明せよ。 (2)線分ABの垂直二等分線ℓに関してAと同じ側にあって,直線AB上にな 1点をPとすると, AP <BP であることを証明せよ。 p.425 基本事項 ② 指針▷三角形において,(辺の大小) (角の大小) が成り立つことを利用する。 (1) AP <AB の代わりに∠B <∠APB を示す。 2つの三角形△ABP と APC に分け て考えるQ (2)(1) と同様に,∠PBA <<PAB を示すことを目指す。 l と線分PB との交点をQとす ると,AQABは二等辺三角形であることに注目。 633ROR THOSES 40 CHART 三角形の辺の長さの比較 角の大小にもち込む 解答 (1) △ABCは∠C=90°の直角三角形 から ZB</C 1 △ABP においてABC ∠APB=∠CAP + <C> <C ∠B << APB (2) B P ① ①② から よって AP<AB (②2)点P,Bはℓ に関して反対側にあるから,線分PB は l ① と交わる。その交点を Q とすると, Q は線分 PB 上にある (P,Bとは異なる)から <PAB> <QAB AQ=BQ また, Q は l上にあるから ゆえに ①② から すなわち よって (2) <QAB=∠QBA ∠QBA < < PAB ∠PBA < ∠PAB AP<BPS (TO)<(C) ATSARA ∠C=90° であるから ∠A<90° ∠B <90° C 80+0T+TA ∠APB は APCの外角。 <∠B<∠C<∠APB から (2) XO+ 検討 三角形の2辺の大小 上の例題 (2) の結果から, △ABCの2辺AB, AC の長さの大小は,辺 BCの垂直二等分線を利用して判定できることがわかる。 つまり 辺BCの垂直二等分線lに関して,点AがBと同じ側にあれば, 炭 <B <∠APB A B P le IM 3 XO coge.3g IP B 42 31 12 三角形の辺と角

未解決 回答数: 1
数学 高校生

数Aです この問題の(2) …②のところの ∠AHP=90°-∠BAH=∠ABH になる理由が分かりません 教えてください🙇‍♀️

練習問題 5 鋭角三角形ABCがある. 頂点Aから辺BCに下ろした垂線の足をHと 78 さらにHから辺AB, ACに下ろした垂線の足をそれぞれP, Qとす る。 (1) A, P, H, Q は同一円周上にあることを示せ . (2) P, B, C, Q は同一円周上にあることを示せ . この問題では, 「内接四角形の定理の逆」 を使ってみましょう。 あ る四角形の 「対角の和が180°」 であれば、 その四角形は円に内接 10 することがわかります. 練習問題4 (2)で見たように, 「対角の和が180°」 であ ることは 「ある内角がその“対角の外角” と等しい」ことと同じであることも 頭に入れておくといいでしょう. 新 主月 ハロ mm 解答 (1) APH + ∠ AQH=90°+90°=180°であるから, 内接四角形の定理の逆より、四角形 APHQは円 に内接する。 つまり, A, P,H,Qは同一円周上 にある。19/ (2) A, P, H, Q は同一円周上にあるので, 円周角 B' の定理よりもBARAの立 ∠AQP=∠AHP .......1 また, ∠AHB=90° ∠APH=90° より . TEA H ∠AHP=90°∠BAH=∠ABH....... ② B は、1つの頂点の内角がその 「対角の外角」 と等しいので、内接四角形の定 ①,②より,∠AQP=∠PBC. 四角形 PBCQ 理の逆より、四角形 PBCQ は円に内接する。 したがって, P, B, C.Qは 同一円周上にある。 313 問題です。 こういう問題では、「結 う方向で考えていくといい の定理の逆が 第8章

回答募集中 回答数: 0