学年

教科

質問の種類

数学 高校生

なぜ、直線Mにおいての任意の複素数をZと表すことができるんですか??直線Lの方でもZが使われてて違うものなのになぜ同じ文字でおけるのか教えて欲しいです!!

B(β) z-a z-a よって, 7-B Y-B. Think 例題 C2.36 垂線の方程式,垂心 **** 複素数平面において, 単位円周上に異なる3点A(a),B(β),C(y) を 定める. ことを証 (1) 点Aから直線 BC に垂線lを引くとき, この垂線ℓ上の任意の点 D1S P(z)について、z-a=By (2-2) が成り立つことを証明せよ。 (2) △ABCの垂心を α, β, y で表せ. 考え方 (1) 点A(a),B(3), C(y), P(z) について,|a|=|β|=|y|=1 解答 APLBC または z=a z-a (山形大改) (2) 点Bから直線CAに垂線を引くとき,この垂線上の任意の点Q (ω) について (1) 1-1が純虚数または01-8=-1 と同様の式が成り立つ垂心は z=w となる複素数である. (1) Pは垂線上の点なので, AP⊥BC または z=α より z-a -は純虚数または 0 Y-B (A(α)→0(0) とな [B(B) → 0(0) るように平行移動す Pzると,P,Cは、それ A(α)ぞれ [P(z)→P (z-a) IC(y)→C^(-3) YA P 1. 0 -1 1 上にある であるから, C(r)-1=0 に移る. z-a z-a A 7-B Y-B 両辺に y-βを掛けて, P'(z-a) z-α=-(y-β) (28) Ala ・① ここで, 3点A(a),B(β), C(y) は単位円周上の点よ り |a|=|β|=|y|=1 C'(r-B) よって, zキαのと したがって,|a|=||=|y|=1 であるから, OP OC を aa=βB=yy=1より, 0のまわりに今だ a= B= y= .....2 a B' A (0-8)=0 け回転して実数倍 したベクトルより ②①に代入すると, Z z-a=-(y-β) =BY (1) 1 1α18 8 2- a a =(β-y)- B-Y B BY よって 00: Z ・③ となり、題意は示された「円 z-a=k cos a=k(cos +isin(7-8) RY=ki(7-8) は0でない実数) よって zaki (純虚数 または0) CES ③は直線lの方程式 (1+1を複素数で表現した 2

回答募集中 回答数: 0
数学 高校生

どうして積の偏角は偏角の和になるのですか?

C2-24 (372) 第5章 複素数平面 例題 C2.13 極形式の積・商 6(cos 80+isin 80) (cos 30-isin 30) **** の値を求め ( 星薬科大) 18 (1)2010 のとき. 例 cos 20+isin 20 た (2) α+β= のとき, cos a-isin a cos β-isin β cos βtisinβ cosa +isina の値を求めよ. 考え 考え方 解答 -0 (広島工業大) (1) cos30-isin30=cos(-30)+isin(-30) とし,積商の極形式を利用する (2)商の極形式が適用できるよう,分子を 十 COS |-isin=cos(-■) +isin(-■ とする. (1) cos30-isin30=cos(-30)+isin (-30) より, (2) 6(cos 80+isin 80) (cos 30-isin 30) cos 20+isin 20 6(cos80+isin80){cos(-30)+isin (-30)} cos 20+isin 20 =6[cos{80+(-30)-20}+isin{80+(-30)-20}] =6(cos30+isin.30)=6lcos(3×1) +isin (3×1)} =6(cos/0/+isinn)=6(1/23+12/21)=3√3+3 cosa-isina_cos(-a)+isin (-α) cos β+isin β cos βtisinβ 極形式のisin ■ の 前は+にする. 複素数の積 → 偏角は和, 複素数の商 偏角は差 0=7 を代入 18 解 平 =cos(-a-β)+isin(-α-β) =cos(a+β)-isin(a+β) ① 同様に, COS cosa +isina 商の極形式 cos(0)=cost sin(-0)=-sin A os β-isin β -=cos (a+β)-isin (a +β)...... ② を利用した. よって、①,②とα+B=1より ・だけ回転し、 cos a-isin a cos B-isin ẞ cosa+isina Focus cos β+isin β =2(cos/isin)=2(12-1)=1-3i (極形式の積の偏角)=(偏角の和) (極形式の商の偏角)=(分子の偏角)(分母の偏角) 注)(2)については分母を実数化して考えてもよい。

回答募集中 回答数: 0