学年

教科

質問の種類

数学 高校生

次の問題で思考プロセスが青いところから下が何がしたいのかよくわからないのですがどなたか解説お願いします🙇‍♂️

思考プロセス an= = (+)" cos —— nx 2 COS nπとする。無限級数Σam の和を求めよ。 <ReAction 無限級数の収束 発散は,まず部分和 Sm を求めよ 例題111) 規則性を見つける YA n=3m-2 αの の部分は, n= 1, 2, 3, のとき 1 1 1 2 2 2' 2' をくり返す。 |場合に分ける ={1-(1)}/{1-(1)}+//{1-(1)} 3m =--{1-(/)} n→∞ のとき, m→∞ となるから 2 lim S3 = 7 2 n=3m 7 ここで. cos 1 より 10 1x 2 n=3m- 0≤ COS lim 12-00 1 (1/2) = 0 より, はさみうちの原理より an → 0 一方, Ssm-1= Ssm-αsm, Ssm-2=Ssm-1-asm-1 であり, In=3m n=3m-1(mは正の整数) の場合に分けて考える。 In=3m-2 (ア) S3m = a1+a2+as+..+α3 =(a1+a+…+α3m-2)+(a2+α+... +α3-1)+(as+a+..+α3m) n→8 → すべて一致すれば (イ) S3m-1= S3m-a3m= n→∞ その値が24円 (ウ) S32S3-1-43m-1=| n→∞ an n=1 解 S= ak とおくと, n=3mm は正の整数)のとき 数列{cos 2 MTが 3 12 4 = COS (2/2) COS2 1 2' 2 1 1,... の (1/2) くり返しになることに着 目して場合分けする。 cos COS4 Sam-cos+() cos+(½) 8 COS +(1/2)*cos 37 + (12)² cos 107 COS COS -π+ 3 +・・・+ 3m- ・1/11/2+(2)+....+(1/1) ***} =- +・・・+ (4)+ 3m COS2m² //{(1)+(2)+....+(1/1)} +・・・+ 3m-1 各{}内は,すべて 公比 t +{(12)+(2)+..+(1/2)}会 (12),数の等 3m 3 12/{1-(1/2)^} (1){1-(1)} 1 1 2 1-(1/2) 3 2 1 3 比数列の和である。 (1/2){1-(1)} + 1 3 no のとき αsm 0, αsm-10 であるから lim S3m-1=lim S3m-2 = lim Ssm したがって 2 19L-00 lim S. = (+) cos nx = COS Point 無限級数の計算の順序 2 7 例題116のPoint で学習したように, 無限級数では, 勝手に項の順 けない。 そのため, 結果は同じであったとしても、 次のように解答を 4 COS- acosx+(1) cosx+(2) cos = COS n=1 2 3 3 COS 14 +(1/2) cos/1/12+(1/2) 1 十 ={12+(1/2)+(2)+...}cos/3+{(1/2)+(1/2)+(- 1 2 (/)+ 1 8 3 +(+) cos+(4) 00810+ COS COS 3 COS 1 316 36 123 12 + ( 12 +{(1/2)+(1/2)+1 (-1/2)+ (2) 1 117 無限級数 1 nπ sin² 2 の和を求めよ。

解決済み 回答数: 1
数学 高校生

数II、二項定理による証明に関する質問です 赤でラインを引いた部分について、丸をつけたnCrのところが書かれているのは、そもそもの問題と比較した時に証明する等式にもnCrが含まれているからで合っていますか? それともなにか理由があるのでしょうか? 塾の教材には2枚目の①の... 続きを読む

基本5 二係数と式の証明 (1) 19 00000 (822-1.2... n) が成り立つことを証明せよ。 (2)(140)"の展開式を利用して、次の等式を証明せよ。 (1) Co-C1+Ca C-C+2,C,.....+(-2)",C.+....+(-2)"C"=(-1)" (1)C +(-1) C++ (-1)".C.-0 p.13 基本事項 を利用して、 kC をそれぞれ変形する。 10 (2)定理(.13基本事項■)において、 a1bx とおくと 3次式の展開と因数分解、二項定理 (1+x)^=.C+CistaCoナ・・・・・・+C++C ****** ① 挙式のと、与式の左を比べることにより、①の両辺でx=1 とおけばよいこと に気づく。同様にして、(f)()ではに何を代入するかを考える。 (U) A.C.-A. (一) 解答 (n-1)! (k-1)!(n-k)! (-1)! R-CA-1- (1)1((n-1)(A-1)}! したがって RaCa=-1-1 4n!-n(n-1)! (n-1)! (k-1)!(n-k! すべてのxの値に対して成り立つ。 ① (2)二項定理により、次の等式①が成り立つ。 (1+x)"=Cat.Cix+++CsJ......Cax* (ア)等式① で, | とおくと (1+1)=,Co+C11+1+......+.+......+C・1" よって Co+++......+C+....+Ca=2" (イ)等式①で、x=-1とおくと (1-1)"=C+C (-1)+(-1)*+....+C (-1)+..+.C.(-1)* よって Co-C+C+(-1) Cy+....+(-1)",C,=0 (ウ)等式①で、x=-2とおくと (1-2), Co+ C (-2)+2(-2)+....+°C, (-2)"'+....+C (-2) Co-2,C,+2,C2......+(-2)"C,+......+(-2)",C=(-1)* よって 素数とするとき (1) から RCx=poCi-l(p≧2;k=1,2,,p-1) この式はC が必ず』で割り切れることを示している。 次の等式が成り立つことを証明せよ。 5 -+-+(-1)*1 2" 2" (2)が奇数のとき Cot,C2+....+.+.+....+, Co=20-1 (3)nが偶数のとき Cat,C+....+....+aCa-1=24 P.23 EX3、

解決済み 回答数: 1