学年

教科

質問の種類

数学 高校生

数学の問題です 解説の下にある別解の青の部分が理解できません。青の上の文章は理解出来ました なぜ=で繋げられるのでしょうか

96 基本 56 剰余の定理利用による余りの問題 (2) 多項式P(x)をx+1で割ると余りが2x3x+2で割ると余りが3x+7 であるという。このとき,P(x) を (x+1)(x-1)(x-2) で割った余りを求めよ。 指針 例題 55と同様に、割り算の等式 A=BQ+R を利用する。 基本55 重要 57 3次式で割ったときの余りは2次以下であるから,R=ax2+bx+cとおける。 問題の条件から、このα, b, c の値を決定しようと考える。 [別解] 前ページの別解のように, 文字を減らす方針。 P(x) を (x+1)(x-1)(x-2) で割ったときの余りを、更にx3x+2 すなわち (x-1)(x-2)で割った余りを考 える。 ...... ① 3次式で割った余りは,2 次以下の多項式または定 数。 P(x) を (x+1)(x-1)(x-2) で割ったときの商をQ(x), 解答 余りをax+bx+c とすると,次の等式が成り立つ。 P(x)=(x+1)(x-1)(x-2)Q(x)+ax2+bx+c ここで,P(x) をx+1で割ると余りは2であるから ② P(-1)=-2 また,P(x) をx3x+2 すなわち (x-1)(x-2) で割った ときの商をQ(x) とすると <B=0 を考えて x=-1, 1, 2 を代入し, a,b,cの値 を求める手掛かりを見つ ける 解答 (2) 指 ゆえに P(1)=4 ****** P(x)=(x-1)(x-2)Qi(x)-3x+7 3, P(2)=1 ...... ④ よって, ①と②~④より a-b+c=-2,a+b+c=4,4a+26+c=1 この連立方程式を解くと a=-2,b=3,c=3 したがって, 求める余りは 2x2+3x+3 別解 [上の解答の等式① までは同じ] x2-3x+2=(x-1)(x-2) であるから, (x+1)(x-1)(x-2)Q(x)はx2-3x+2で割り切れる。 ゆえに,P(x) をx2-3x+2で割ったときの余りは, ax2+bx+cをx2-3x+2で割ったときの余りと等しい。 P(x) を x2-3x+2で割ると余りは-3x+7であるから ax2+bx+c=a(x2-3x+2)-3x+7 よって, 等式①は,次のように表される。 P(x)=(x+1)(x-1)(x-2)Q(x)+α(x²-3x+2)-3x+7 したがって P(-1)=6a+10 P(-1) =-2であるから 6a+10=-2 よって a=-2 8+x=2+01 求める余りは-2(x^2-3x+2)-3x+7=-2x2+3x+3 (第2式) (第1式) から 266 すなわち 6=3 この解法は、下の練習 56 を解くときに有効。 ax2+bx+c を x2-3x+2で割ったとき の余りをR(x) とすると 商は αであるから = (x+1)(x-1)(x-2)Q(x) P(x)=(x)9 +α(x2-3x+2)+R(x) =(x2-3x+2) ×{(x+1)Q(x)+α}+R(s) 多項式 P(x) を (x-1)(x+2) で割った余りが7x, x-3で割った余りが1であると ③ 56 き,P(x) を (x-1)(x+2) (x-3) で割った余りを求めよ。 【千葉工大) 67.38 練習 $57

解決済み 回答数: 1
数学 高校生

【三角関数】 (オ)についてです。 答えが③になる理由がわからないです。 問題文からわかるのですか? それとも基本事項ですか?

数学B・数学C (注)この科目には、選択問題があります。(3ページ参照。) での三角比の合成 第1問(必善問題)(配点 15) 紅学・学 数学Ⅱ・数学B 数学 C ウ の解答群 太郎さんは三角関数のある問題の解法の解説を読んで,自分で応用を考えてみる ことにした。 百 3π 2 ①π ② ③ 2π 2 太郎さんは方程式 sin 6. +- =cosxx の解について考えてみることにした。 I の解答群 (1)太郎さんはたとえば="を代入すると水の左辺はア ,右辺は イ sinasin β ① sin a cos β となり一致しないことを確かめた。 また,他に幾つかの値を代入してみたが を満たすxの値はみつからなかった。 sin (bit ④ 2sin asin / ⑤ 2sin a cos B cos asin ẞ ⑥ 2 cosasin β ③ cosacos β ⑦2 cos a cos B 3_ で イ の解答群 6 O 1 /3 ① √2 ② ③ 2 ④ 0 2 (5) ⑥ √2 2 √3 ⑦ ⑧ -1 2 (2)太郎さんは先に読んだ解法にならって次のように考えた。 一般に cos x=sin( ウ -x) (3)太郎さんは別の解法についても考えてみることにした。 太郎さんは一般に inA=sin B のとき, A=オであることに着目し, A=6x+7 B= ウーと考えることでも方程式を解けることに気がついた。 B+zu オの解答群 ⑩ B+nπ (n は整数) ① B+2n (n は整数) ②B+mπ, π-B+nπ (m, n は整数) ③ B+2mπ, π-B+2nπ (m, n は整数) sin ( Sin であるから, 方程式の解は方程式 sin(6æ+/)=sin(ウ-x)…の解 である。 一般に sinxcospt cosin カ (4) 方程式の正の最小の解はx= π,正の小さい方から2番目の解は sin(α+β)-sin(α-β)= H {rindcosp+ cosasige) キク O ケ である。よって, α+3=6x+a-B= ウ 3' -x から α, β を求め, x= πである。 また, 方程式 Xの 0≦x<2である解はシス 個ある。 コサ エ =0に着目することで方程式 すなわち方程式を解くことができる。 (数学Ⅱ・数学B 数学C第1問は次ページに続く。) sin (6x+1)= = 105 x. sx= sin(x) ze 2 cosa sing x-13=6x+3 x- 6 α = 2 cos (2x+27) d-= -x. ( E * + 2 -5- -4- 2d=5x+ x + 6 12 x -x

解決済み 回答数: 1
数学 高校生

数1A標準問題精巧からの問題 この問題でα=-1を求めた後にpとqの連立方程式を解くのですが、解説とは違ってp=q-1 (解説ではq=p+1とおいている)とおいた時に、p^2=4)よりp=±2がでてきます。なぜこの時pが+2になってはいけないのか解説できないでしょうか。

02/19212/31 標問 28 共通解 0 の方程式 x+px+g=0 x²-px-q=0 について,次の条件(a), (b), (c)が成立している (a) g≠0 である (b) ① ② は共通の解αをもつ (c) ②は重解をもつ このとき, α, p, gの値を求めよ. ・精講 2つの方程式が共通な解をもつとい う設定もときどきあります. 解法のプロセス 共通解をもつ このようなときには, 共通解をα とおく のが常套手段です。 本間の場合, 1, ②は共通の解αをもつので a³+pa+q=0 a2-pa-g=0 が成り立ちます。 ↓ 共通解をαとおく. D= 67 (工学院大) ······ 3 ←x=α を ①に代入する x=α を ②に代入する 後は、この2つの式を連立します。 当然の事ですが、 連立する際には, 式の形をよ く見て、いじってみるより他に方法がありません. 上の③ ④の場合なら, ぜひ2式を加えてみま しょう.3+α²=0 というとても有難い式が得 られます. 解答 ①,②が共通の解αをもつ ((b)) ので °+pa+g=0 a²-pa-q=0 ③ + ④ より a³ +α²=0 よって, a²(a+1)=0 1012/15 28

解決済み 回答数: 1
数学 高校生

赤線引いているところどうやって求めたんですか?

00 の値 定数 86 重要 例題 86 2次関数の係数決定 [最大値・最小値] (2) 00000 [定義域を0≦x≦3 とする関数 f(x)=ax2-2ax+bの最大値が9, 最小値が1の とき、定数a,bの値を求めよ。 ・基本 85 指針 この問題では,x2の係数に文字が含まれているから, αのとる値によって, グラフの 形が変わってくる。 よって、次の3つの場合分けを考える。 a=0 (直線), a>0(下に凸の放物線), a<0 (上に凸の放物線) a0 のときは,p.137 例題 80と同様にして,最大値・最小値を a, b の式で表し, (最大値)=9, (最小値)=1から得られる連立方程式を解く。 147 なお,場合に分けて得られた値が, 場合分けの条件を満たすかどうかの確認を忘れな いようにしよう。 3章 ⑩ 2次関数の最大・最小と決定 関数の式を変形すると で 52 解答 [1] α=0のとき 区 より f(x)=α(x-1)2-a+b f(x)=b (一定) となり、条件を満たさない。 [2] a>0のとき y=f(x) のグラフは下に凸の放物 線となり,0≦x≦3の範囲でf(x) はx=3で最大値f(3) = 3a+b, x=1で最小値f (1) = -a+b [a>0] 軸 最大 GIT まず基本形に直す。 常に一定の値をとるから, 最大値 9, 最小値1をと ることはない。 軸は直線x=1で区間 0≦x≦3内にあるから, a>0のとき 軸から遠い端 (x=3) で をとる。 したがって 100 最小 3a+b=9, -a+b=1 x=0x=1 x=3 これを解いて a=2, b=3 最大, 頂点(x=1) で最 小となる。 これはα>0を満たす。 この確認を忘れずに。 8118

解決済み 回答数: 1
数学 高校生

数Iの黄チャートの例題80の青の線を引いているところがなぜこの答えになるのかわかりません。解説よろしくお願いします🙇‍♀️

基本 例題 80 2次方程式の応用の 右の図のように, BC=20cm, AB=AC, ∠A=90° の三角形ABC がある。 辺 AB, AC上に AD=AE となるように2点D, E をとり, D, E から辺BC に 垂線を引き、その交点をそれぞれF, G とする。 D 00000 A E 基本 66 B F G 長方形 DFGE の面積が20cm² となるとき 辺FG の長さを求めよ。 CHART & SOLUTION 文章題の解法 ① 等しい関係の式で表しやすいように, 変数を選ぶ ②解が問題の条件に適するかどうかを吟味 FG=xとして, 長方形 DFGE の面積をxで表す。 そして、 面積の式を =20 とおいた, xの2次方程式を解く。 最後に, 求めたxの値が, xのとりうる値の条件を満たすかどうか 忘れずに確認する。 解答 3 9 01(S-1) (SA) #AE SA FG=x とすると, 0 <FG<BC であるから A 0<x< 20 ・① また, DF=BF=CG であるから D E 2DF=BC-FG # よって DF= 20-x 2 B F G C 3.0 - [0] 定義域 ∠B=∠C=45° であるか ら, BDF, ACEGも直 角二等辺三角形。 830 => [s] 20-x 長方形 DFGE の面積は DF •FG= x 2 20-x ゆえに x=20 2 整理すると これを解いて x2-20x+40=0 x=-(-10)(-10)2-1・40 =10±2√15 ← 係数が偶数 26′型 912 ここで, 02√158 から とき 解の吟味。 10-8<10-2/15 <20, 2<10+2/15<10+8 02√15=√60<√64=8 よって、この解はいずれも ①を満たす。 したがって FG=10±2/15 (cm) 単位をつけ忘れないよう に。 PRACTICE 802 その平方が、他の2数の和に等しい。 この3

解決済み 回答数: 1
数学 高校生

7 ①サが③になる理由が分かりません。1枚めの写真の右下にグラフを書いたのですが、どうやったら2次関数で表せるのですか? ②シスセソが分かりません。解説を読むとy=e(x-p)の2乗とあるのですが、この式に➕qをしなくて良い理由が知りたいです。y=e(x-p)の2乗➕qだ... 続きを読む

太郎さんと花子さんは,先生から出された次の問題について考えている。 問題 座標平面上に5点A(1,6), B(2.7), C(-2,-9), D(-4,-9), E (-7, 21) がある。 (i) 2次関数y=f(x) のグラフが、 3点 A, B, C を通る。 f(x) を求めよ。 (i) 2次関数y=g(x) のグラフが, 3点C, D, E を通る。 g(x) を求めよ。 先生: 2次関数のグラフの特徴をいかして, 2次関数の置き方を工夫できましたね。2次関数は, グラフが通る3点が与えられればただ一つに定まりますが、通る点から2次関数の置き方を 工夫すると、面倒な計算を避けることができますね。 では、次の問題を考えてみてください。 太郎: f(x) は2次関数だとわかっているから、f(x)=ax+bx+c とおいて計算すれば, a, b,c の値を求めることができそうだね。 3a+b=1 花子: f(x) は2次関数だから,ア という条件が必要だよ。 -730-36--15 太郎: そうだったね。 3点を通る条件が順に 49:16 ic=-a-h+g+b+c= 46-29-0-6=7, Bath=1 4-4 C-6-1774-6 a+ エンb+c=70-21-6-1+5=-930-392-15 3a+4=1 805-3 =(-4546 カン6+c=-9 a:-1 だから、この連立方程式を解くと, α = [キク h コクと求まるね。 でも, (ii)で同じことをしようとすると, 計算が面倒だね。 花子 2次関数のグラフの対称性を使うともう少しうまくできそうだね。 太郎: たしかに, 2点C, Dのy座標が等しいということから も大きいものは,頂点の座標が セ 先生: よくできました。 問題 2次関数のグラフがx軸に接し、2点 (1,1) (3,4)を通るとき、この2次関数を求めよ。 先生: この問題は、接する点の座標がわかっていないから、2次関数はただ一つに定まるかどうか わかりません。これまでの2人の学習をいかして、 2次関数の置き方を工夫して考えてみま しょう。 花子:できました。このような2次関数は2つあり、このうち、グラフの頂点のx座標が最 ス 51 ソリとなりますね。 (2) g(x)= サ ~に当てはまる数を求めよ。 とすることができるね。 花子: g(x)= サ とした方が, (i) と同じようにするよりも計算が楽にできそうだね。 (1)イ~ コに当てはまる数を求めよ。 ア の解答群 ⑩ a=1 ① a=-2 2 a=0 ③ a > 0 ④ a<0 の解答群 ⑩ d(x-3)2-9 ① d(x-3)2 +g ② d(x+3)2-9 ③ d(x+3)+q E. 21 -4 -2 0 C -9 -18- f(x)=ax2+bx+c sayaoc = 1 (qa+3+C=4 <<-19-> (配点 15) <公式・解法集 13

解決済み 回答数: 1
数学 高校生

解説お願いします。 写真の黄色マーカー部分についてです。 y=0以外に解が存在するのがよく分かりません。 図を見ても解はy=0だけのように見えます。 黄色マーカー部分はどこの解のことを指しているのか教えていただきたいです。 よろしくお願いします。

国 111円に接する放物線 放物線y= ★★★☆ =1/2x1と円+(-a)=(a>0, r>0)②につ いて、次の条件を満たすようなαの値の範囲を求め, r をαの式で表せ。 (1) 放物線 ①と円 ②が原点0で接し, かつほかに共有点をもたない (2) 放物線 ①と円 ②が異なる2点で接する。 xについての4次方程式(別解1) 820 >0の解は を消去 1, 2 次数が高い を連立 yについての2次方程式(本解 ) xを消去 次数が低い 共有点2つに対応 対応を考える」 解は共有点のy座標を表す。 y=0の解は 図形は y 軸対称であり, 解と共有点 接点1つに対応 y▲ 思考プロセス の対応は右の図のようになる。 条件の言い換え についての2次方程式が (1)y≧0において,解が y=0 のみ (2)y>0において, 重解をもつ x Action» 円と放物線の共有点は、連立して×を消去せよ 円 解 ①より, x=2y でありy≧0 6 x ② に代入すると 2y+(y-a)2=re xを消去する。 y2+2(1-a)y + (d2-r2) = 0 ③3 (1) 題意を満たすのは, ③が y = 0 を解にもち, y> 0 の範囲に解を y = 0 しか解はない。 もたないときである。 共有点が原点のみである から, y ≧0 においては, また,このとき, グラフ の対称性から, 原点で接 するといえる。 y = 0 が解であるから, a-r2 = 0 a>0, r>0であるから r=a このとき,③は y2+2(1-α)y=0 y{y+2(1-a)}= 0 よって, ③のy = 0 以外の解は y=2(α-1) 2(4-1)≦0 より 0<a≤1 したがって 0<a≦1,r = a ① 2 (α-1) が正であっては いけない。 2(4-1)=0のときも含 まれることに注意する。

解決済み 回答数: 1