学年

教科

質問の種類

数学 高校生

なんでこの問題って場合分けしないといけないんですか?

252 y=2sint-sint (0≧≦) と表される右図の曲線と, x軸で囲まれた図形の面積Sを求めよ。 重要 例題 160 媒介変数表示の曲線と面積 面 媒介変数によって,x=2cost-cos2t 6 y CHART & SOLUTION 基本 156 基本例題156 では,tの変化に伴ってxは常に増加したが, この問題ではの変化が単調でないところがある。 とする y2 この問題では点Bを境目としてxが増加から減少に変わり x軸方向について見たときに曲線が往復する区間がある。 したがって, 曲線 AB を y, 曲線 BC を y2 とすると 求め る面積Sは 右の図のように, t=0 のときの点を A, x座標が最大とな る点を B(t=tでx座標が最大になるとする),t=xのとoco きの点をCとする。 B i-3 0 1 A xx t=0 t=to 曲線が往復 している区間 (a>0) S=Sydx-Sy yi dx x0 ! ら と表される。 よって,xの値の増減を調べ,x座標が最大となるときのtの値を求めてSの式を立てる。 また,定積分の計算は,置換積分法によりxの積分からtの積分に直して計算するとよい。 解答 図から,0≦t≦πでは常に 2x-1200=xb (-xhie) logob log3-2 『 y≥0 onial また y=2sint-sin2t=2sint-2sintcost -Dial =2sint(1-cost) inf. Ost≤ DE sint≧0, cost ≦1 から Dy=2sint(1-cost)≥0 としても, y≧0 がわかる。 よって, y=0 とすると sint = 0 または cost=1 0 から t=0, π 次に, x=2cost-cos 2t から から dxc == -2sint+2sin2t dt D =2sint+2(2sintcost) (小平 (八 =2sint(2cost-1) << において x=0 とすると, sint>0 で dt あるから t 20 π ・・・ cost= 2 ゆ t= + 3 0 「 よって、xの値の増減は右の表のようになる。分するよう! 1 XC -> 32 T ← B

解決済み 回答数: 1