学年

教科

質問の種類

数学 高校生

(2)について質問です。下線を引いているようになぜm+r+1/n≦1とm+r+1/n≧1で場合分けをするのですか?またその後に線を引いている(n-r)k+r(k+1)はどのようにして計算したら出てくるのかも分かりません💦どなたか教えてほしいです

第9章 整数・数学と人間の活動 40 よって、等式①は成り立つ。 (1)〜(曲)より、すべての実数xに対して, 等式①は成り 立つ。 [x]≦x<[x]+1 より [x] <x<[x]+1 n n [x] は整数であるから,[nx] は, nk, nk+1,nk+2, .........nktn-1 (kは整数)のいずれかで表される. [nx]=nk+r(r=0, 1, 2,…, n-1) kt1≦x<k+r+1 とすると,①より ......③ n n ここで,m=0,1,2, …………, n-1 として ③の各辺 に皿を加えると, n m+r m k+ ≦x+ m+r+1 <k+ n n n m+r+1 22 m+r k≦k+ n m n -≦1,すなわち,0≦m≦n-r-1 のとき, -≤ x + <h+ m+r+1 ≦k+1 n より[x+m-k =k n m+r,すなわち, n-r≧m≦n-1のとき, n m k+1≦k+m+rsxt. <k+ n m+r+1 <k+2 n n より,[x+m]=k+1 n したがって, [x]+[x+/-]+[x+2]+... + [x+ n-r n ] + [x x+ n-r n +x+ n. n =(n-r)k+r(k+1)=nk+r また②より よって、等式 [nx]=nktr [x]+[x+2]+[x+2]+....+[x+タリー[28] は成り立つ. 注 (1)において, m = 0, 1, 2 として ktmtr r≤x+. m m+r+1 <h+ のときの [x+7] 3 3 3 3 の他に着目すると, m+r+11 のとき [+] 3 mtr = 21のとき, [x+k+1 m =k r=0 のときは,これを満 すmの値はない。 kとなるのは, [x], n-r k+1となるのは、 n の(n-r) 個 [ x + 1 = 1 ] 0 n- の個

回答募集中 回答数: 0
数学 高校生

直線束の考え方がよく分かりません 87ページの内容を説明して頂きたいです😭 その上で、例題13も説明して頂きたいです

束の考え方 1つの共有点をもつような2つの直線 ax+by+c=0 ax+by+c=0 ...... ② 87 があるとします.ここで、①の式に②の式をを倍して足した新しい式 (ax+by+c)+k(a'x + b'y + c') = 0 を作ってみましょう.これもやはり直線の方程式になります。 ③の式から②の 式のk倍を引き算すれば① の式が作れるのですから, 「①と②」の式と「②と ③」 の式は同値です。つまり、図形的に見れば、 ①と②の2直線の交点と②と ③の2直線の交点は一致することになります。 一致する * このことより, ③は(kの値によらず) ①と②の交点を通る直線である ということがいえます. ③において, kの値をいろ いろと変化させてできる直線の集まりは一点で結わ れた直線の束に見えるので,直線束と呼ばれていま す. これを利用すると, 2直線の交点を通る直線を 実際に交点を求めることなく扱うことができるので とても便利です。 コメント んの値が動くと 直線が動く 直線束 第3章 この束には、②の直線は含まれません,これは, 「同値関係」を考えてみれ ばわかります. もし③が② に一致するならば, 「③と②の共有点の集合」は直 線 ②全体になってしまいますが,「①と②の共有点の集合」 は1点ですので、 同値であることに矛盾してしまうのです. 一方, ②の直線上にない点を (p,g) とすると,ap + b'y + c'≠0 ですので,③が(p, q) を通るようなkの 値を決めることができます (③ に (p, g) を代入したものはんの1次方程式にな るので,それを解けばいいのです) つまり,③は 「①と②の交点を通る ②以 「外のすべての直線」 を表せることがわかります.

回答募集中 回答数: 0
数学 高校生

vision questⅡ English expression hope70ページ preview 1.date&time 2.numbers(sizes,measurements,etc) 3.prices&Phone numbers listening task 1.... 続きを読む

140 // TIT Activity for Communication 3 Preview Listen to the sentences below. 1 Dates & Times Listening for Numbers the on Enio 1. "The movie starts at 5:20. Can you be ready in ten minutes?" "OK. I'll try." 2. "What time is it now?" "It's 11:30." basalaila awohlsw 3. I have an appointment with the dentist this Thursday, the 10th. M 4. "When does school begin?" "It begins on April 8th." 5. Our school was established in 1965. 6. My family has lived in this town since 2005. 2 Numbers (sizes, measurements, etc.) 1. Two thirds of the students come to school by bus. 2. One mile is about 1,609 meters. 3. The city has a population of about 2.5 million. 4. The temperature dropped to 12°C. 5. APA Air Flight 125 for London will be departing from Gate 14 at 10:15. 3 Prices & Phone numbers 1. The price of this bag is $27.89, but you can have it at 10 percent off. 2. What would you do if you won 100 million yen in a lottery? 3. "A hamburger and a cola, please." "That'll be £2.99." 4. I need €20, but I'm €5 short. 5. My phone number is 612-750-5613. Listening Task Listen to the conversations and choose the correct answers. 1. How much of the earth's surface is covered by ocean? 1 more than one third more than one fourth 監督署 ER 70 3 more than two thirds 4 more than two fifths 2. When were the Olympic Games held in Atlanta? 1 in 1966 2 in 1969 3. How much did the dress cost? 1,100 yen 2 1,800 yen 3 in 1996 4 in 1999 S 8,000 yen ③ 13,000 48,800 yen bluros ④ 30,000 about 200,000 4. How many people can the concert hall hold? ① 1,300 ② 3,000 5. How many people live in the city? ①about 2,000 2 about 12,000 3 about 20,000 ① 207-7300 2207-7003 ③ 702-3300 6. What's the phone number of the restaurant? The number is 510- ④ 702-3003

回答募集中 回答数: 0
数学 高校生

(4)からまったくわかりません... 解説お願いします

Think 例題 153 総合問題 右の図は,生徒20人に行った 整理と分析 301 **** 点で図形の得点が5点である生徒の 人数は2人である. の結果をまとめたものである. 関数 の得点xを横軸に,図形の得点yを 縦軸にとっている.図の中の数値は xyの値の組に対応する人数を表し ている。 数と図形のテスト(ともに10点満点) 10 9 8 1 7 1 11 6 1 11 y 5 121 4 たとえば、関数の得点が7 3 1 22 1 2 2 1 各生徒の得点について, x+y の最大値と, x-yの最大値 を求めよ. 0 01234 5 6 7 8 9 10 X が S 5. (2)図をもとに,次の表を完成させよ.また,各テストの得点の平均値 を求めよ. 点(点) 0 1 2 3 4 5 6 7 8 9 10 2435 10 関数(人) 0002 図形(人) 012335231 (3)(2)の表を使って各テストの標準偏差を求めると, 関数は2.8点 図形は3.6点, 関数と図形の得点の共分散は2.55 であった. 関 数と図形の得点の相関係数の値を四捨五入して小数第2位まで求 めよ.ただし,√7=2.646 とする.A0.80 右の表は、別の5人の生徒 A, B, 5人の生徒 ABCDE C,D,Eに同じ問題のテストを行 った結果である. 5人の関数と図 形の得点の平均値は, それぞれ 20 165 関数の得点 7 4 6 9 4 6 図形の得点 5 4 5 6 5 人の得点の平均値と同じであった.20人にこの5人を加えた合計 25人の生徒に関する関数と図形の得点の相関係数Rの値を小数第 2位まで求めよ. (5)これらのテストの結果について、次の①~③は正しいといえるか、 ① 生徒 25人の得点について、関数と図形の平均値からの散らば り具合は同じである. ② 生徒 20人の関数と図形の得点の正の相関はやや強いが,A~ Eの5人が加わると正の相関は少し弱まる. ③ 生徒 25人の図形の得点が一律に1点上がれば,25人の関数と 図形の得点の相関係数の値はより大きくなる. 第5章

回答募集中 回答数: 0