学年

教科

質問の種類

数学 高校生

テトナがわかりません。 答えに樹形図があったのですがいまいち理解ができませんでした…どなたか写真の樹形図の説明と書き方を教えてください。 すみませんがよろしくお願いします🙇‍♀️

第4問 (配点 20) 1個のさいころを繰り返し投げ,次の規則(a), (b) にしたがって箱の中の球の個数 (以下, 球数) を変化させる。 最初, 箱の中に球は入っていない。 (2) さいころを2回投げた後の球数のとり得る値は, 小さい方から順に 2, ウ I 2回 であり,それぞれの値をとる確率は次のようになる。 規則 (a) 1回目に出た目が, 3の倍数のときは箱に球を1個入れ, 3の倍数でないと きは箱に球を2個入れる。 b 2回目以降は次のように球数を変化させる。 出た目が3の倍数のときは箱に球を1個追加する。 出た目が3の倍数でないときは球数が2倍になるように球を追加する。 例えば, 1, 2, 3回目に出た目がそれぞれ 6, 3, 2ならば, 球数は 0個 → 1個 +1 ← 2個 4個 +1 ×2 と変化する。 ア (1) さいころを1回投げるとき, 3の倍数の目が出る確率は である。 イ (数学Ⅰ 数学A第4問は次ページに続く。) 球数 2 ウ I 確率 13 オ キ カ ク ケコ よって, さいころを2回投げた後の球数の期待値は である。 また, さいころを2回投げた後の球数が エ であったとき 2回目に出た目 シメ が5である条件付き確率は である。 スメ (3) 球数が5以上になったところでさいころを投げることを終了するものとし, 終了 するまでにさいころを投げる回数をN とする。 ソタメ Nの最小値は であり, N= となる確率は である。 チツ× テトX X また,Nの期待値は である。 X

回答募集中 回答数: 0