学年

教科

質問の種類

数学 高校生

最後の ナニヌネ のところの解説なんですが、赤で囲ったところってなんですかこれ、3とか2とかどこから出てきてるんですか?🙇🏻

第4問 選択問題(配点20) 数列 (v)を、次のように群に分ける。 00000 (a)はa, 公差が〆の Q1+d であるから、ガー 数列であり、10とする。 である。 第1回 第2 and as 第3回 +4x-1) ここで、からなるものとし、に含まれるのをア 表す。 よって、 数列 (a)の一般は ・イーウ である。 301-341 数列 (b) の一般項は21であるとする。 (1)は、(a) カキ 項であり、 る。 43 クケ であ カキ ( 1)公比が比較であり、から頂まで 2 の和は すである。 (21) (2) たすかはコサ は シ コサ 群の最初の頃は であり、最後の頃はα 3月1 群に含まれる。 第 であるから、 シ スセ オ の解答群 n(n+1) 群に含まれる項の総和で チツテトである。 図 1384 1096 (3) 花子さんと太郎さんは表すことについて話している。 2-1-1 2"-1 2" (n+1)(2n+1) (+1) 2"-1+1 ® 2+1 数学Ⅱ・数学B 第4問は次ページに続く。) an=32-2 2-19 39-2355 39-2 32:57 33 117-2 154 60-2 45-2 λ= 58) λ=115) 8 173 2/2.16(58(115) 花子 だね。 に含まれる項の個数は6. 太郎:あとは、群の最初の頃と最後の項を調べるといいね。 群に含まれる頃の総和 T. は T-2 (図 である。 137 ナ 又 の解答群(同じものを繰り返し選んでもよい。) 91 ⑩k-2 16-1-917 ① k-1 k +1 ④ +2

回答募集中 回答数: 0
数学 高校生

詳しく解説してください

重要 21 等式を満たす多項式の決定 00000 多項式f(x) はすべての実数xについてf(x+1)-f(x) =2x を満たし,f(0)=1 であるという。 このとき, f(x) を求めよ。 (一橋大 基本15 指針 例えば,f(x)が2次式とわかっていれば,f(x)=ax2+bx+cとおいて進めることが 進める。f(x+1)-f(x) の最高次の項はどうなるかを調べ, 右辺 2x と比較するこ →f(x)はn次式であるとして, f(x)=ax+bx-1+...... (a≠0, n≧1) とおいて できるが,この問題ではf(x) が何次式か不明である。 とで次数nと係数αを求める。 なお,f(x) = (定数) の場合は別に考えておく。 f(x)=1 | この場合は,(*)に含 f(x) =c(cは定数) とすると, f(0)=1から 解答 これはf(x+1)-f(x) =2x を満たさないから,不適。 よって,f(x)=ax+bx"-1+...... (a≠0, n≧1)(*) とす 0=1+v-xl ると f(x+1)-f(x) 1+x=4 =a(x+1)"+6(x+1)"-'+…………-(ax"+bxn-1+…………) =anx-1+g(x) ただし,g(x)は多項式で,次数は n-1より小さい f(x+1)-f(x)=2xはxについての恒等式であるから、最 高次の項を比較して ①から れないため、別に考えて いる。 (x+1)^ =x+nCixcm-1+nCzx-2. のうち, a(x+1)+1-ax" 次の項は anx-1で りの頃は2次以 n-l=1 ・①, an=2. ②なる。 ....... xの次 係数を比較。 n=2 ゆえに、②から a=1 このとき,f(x)=x2+bx+c と表される。 f(0)=1から c=1 またf(x+1)-f(x)=(x+1)2+6(x+1)+c-(x2+bx+c) c=1としてもよ よって =2x+b+1 2.x+b+1=2x この等式はxについての恒等式であるから 結果は同じ b+1=0 係数比較法。 すなわち b=-1 木ゴル したがって f(x)=x-x+1

回答募集中 回答数: 0
数学 高校生

これってどうしてベクトルAA’がベクトルaにならなきゃいけないんですか?

DOO AB、 00000 平面上に原点から出る, 相異なる2本の半直線 OX, OY (∠XOY < 180°上に 要 例題 27 角の二等分線とベクトル それぞれ0と異なる2点A, B をとる。 (1)a=0A, 6=OB とする。 点Cが XOY の二等分線上にあるとき, 実数(0) とα で表せ。 (2) XOYの二等分線と XAB の二等分線の交点をPとする。 OA=2, 0B=3,AB=4のとき, OPをa と で表せ。 [類 神戸大] 基本 24 (1)ひし形の対角線が内角を2等分することを利用する。 OA' =0B'=1となる点 A', B' そんな半直線 OA, OB上にとり, ひし形 OA'C'B' を作ると, 点Cは半直線 OC' 上にあるOC=FOC (t≧0) (2)(1)の結果を利用して,「OPを2通りに表し、係数比較」 の方針で。 P は XABの二等分線上にあるAA'=aである点 A' をとり、(1)の結果を使うと, AFは,で表される。 OP=OA+APに注目。 ここのベクトルは 423 →ひし形になる→同じ大きさ(おわり) 答 と同じ向きの単位ベクトル それぞれ OA OB' とすると 1章 4 位置ベクトル、ベクトルと図形 Y B 別解 (1) XOY の二等分 線と線分AB との交点Dに 161 C OA'== OB'= 対し, AD: DB=|a|: |6| か B' lal Dal C 5 OD=> OA'+OBOC とすると,四角形 0-A' AX a 6 OA+a OB |a|+161 ab a+ OA'C'B' はひし形となる。 Tal a+ba b 点Cは, XOY すなわち ∠A'OB' の二等分線上にあるか ら、半直線OC' 上の点である。 点Cは半直線OD 上にあるか 5 OC=kOD (k≥0) ab よって、実数(≧0)に対し OCHOC=t (+) そこで -k=t とおく。 (2)点P は XOYの二等分線上にあるから, (1) より OP=t 132 + 3 これを解いてs=8, t=6 3 したがって OP =3a+26 AA'である点 A' をとると、点PはXAB の二等分線上 にあり、AP=s AB AA' (≧0) であるから + AB AA OP=ON+AP=d+ (6=2+2)-(1+1+1/6 Taxであるから 1/12=1+1/4/1 1-1 Ta+16 Y. tzo ar Bis 大きさが 違う 4. 3 072-A-2-AX 単位ベクト 使 練習 △OAB において,|OA|=3, |OB|=2, OA・OB=4とする。 点Aで直線OAに 27 接する円の中心Cが∠AOBの二等分線上にある。 OC をOA=d, OB= で [ 類 神戸商大 ]

回答募集中 回答数: 0
数学 高校生

黄色マーカーのところと、赤線のところが何をしているのかがわかりません。 教えてください。

00 出発点 出た Aに 道大 本 52 421 重要 例題 57 独立な試行の確率の最大 さいころを続けて100 「率は100Cm× 指針 6100 回投げるとき, 1の目がちょうど回 (0≦k≦100) 出る確 であり,この確率が最大になるのはんのときである。 [慶応大 基本49 (ア) 求める確率を する。 1の目が回出るとき, 他の目が100回出る。 (イ) 確率の最大値を直接求めることは難しい。 このようなときは, 隣接する2項 との大小を比較する。 大小の比較をするときは, 差をとることが多い。 し しかし、確率は負の値をとらないこととCr=- n! や階乗が多く出てくることから、比 ph 確率の大小比較 pk+1 Þk +11k<pk+1 (増加), P1 ph r!(n-r)! を使うため、式の中に累乗 をとり、1との大小を比べるとよい。 Pk+1 Þk <1>+1 (減少) 比 をとり、1との大小を比べる さいころを100回投げるとき, 1の目がちょうど回出る B 確率を とすると 解答 DK = 100 CK ( 12 ) " ( 5 ) " 100-k 75100-k 6 =100CkX かから 6100 反復試行の確率。 pk+1 100! • 599- ここで pk (k+1)!(99-k)! × k! (100-k)! 5100(+1) 100!.5100-k p+1=100 (+1 X 6100 k! (100-k)(99-k)! 599-k 100-k ・・・かのんの代わりに (k+1)k! (99-k)! 5.5-k5(k+1) k+1 とおく。 pk+1 1 とすると 100-k ->1 pk 5(k+1) 両辺に 5(k+1) [0] を掛けて 100-k>5(k+1) 95 これを解くと k<=15.8・・・ 6 よって, 0≦k≦15のとき Dr<Dk+1 Pk+1 < 1 とすると 100-k<5(k+1) pk これを解いて k> 95 =15.8・・・ 6 よって、16のとき DR>pr+1 増加 kは 0≦k≦100 を満たす 整数である。 pkの大きさを棒で表すと |最大 減少 したがって分かくかく・・・・・・<P15 P16, Die Bir?.... 100 012 100/2 よって, Dr が最大になるのはk=16のときである。 15 17 16 199

回答募集中 回答数: 0
数学 高校生

29番の(1)で必要十分条件を求める問題で、どちらが必要条件でどちらが十分条件か分からなくなってしまいました。考え方を教えて頂きたいです。

28 よって ここで ゆえに −(n=k+1}{n+k+1)+(n−k)(n+k) n→∞0 =-2k²+(2n²+2n+1) f(n)=-4 f(x)=x(2k² +2n² +2n+1) k²=0+22k², 1=2n+1 TA³5 k=1 −42 k²+(2n²+2n+1) (2n+1) k=1 − n(n+1)(2n+1)+(2n²+2n+1)(2n+1) lim 72-00 n³ (2) f(n) -1/(1+1/2)(2+1/2)+(2+1/2)(2+1)} =--²--1-2+2-2= 8 3 3 別解n≦x≦k, k≦x≦n と k<x<kに分けて,直線 y軸に平行な直線につ x=i (-n≦i≦n) 上にある格子点の数を求める。 さて格子点を数える。 = -n≦i≦k のとき, 格子点の数は k=-n 1+3++{2(n−k+1)−1}=(n−k+1)² = (+_____________ k<i<kのとき, 直線 x = i の本数は ←-k+1≦isk-1 各直線上の格子点の数は よって k-1-(−k+1)+1=2k-1 = I=gb S=b 2(n-k+1)-1=2n-2k+1 Nk=2(n-k+1)+(2n-2k+1)(2k-1) =-2k²+(2n²+2n+1) 総合を複素数とする。 自然数nに対し、2” の実部と虚部をそれぞれxとyとして、2つの数列 29 {Xn},{yn}を考える。 つまり, z=xn+iy" (iは虚数単位) を満たしている。 (1) 複素数zが正の実数と実数0を用いて z=r (cos0+isine) の形で与えられたとき、 数列{x},{ym} がともに0に収束するための必要十分条件を求めよ。 1+√3 10 = n(n+1)(2n+1) のとき、無限級数Σx とΣy はともに収束し, それぞれの和は n=1 71=1 x=2y=イロである。 (1) z=r (cos0+isin0) [r>0] のとき HINT (1) x²+y² = (r")2 となることに注目し, まず必要条件を求める。 (2) z を等比数列の和の公式を利用した式で表してみる。 ORAN z"=r" (cosnotisinn()=r"cosn0 +ir” sinne Xn=r" cosnd, yn=r"sinno よって ゆえに x2+yn²=(r")' (cos2nd+sin'nb)=(x2)" limxn=limyn=0のとき lim(x²+ym²)=0 〔類 慶応大] 本冊 例題 13,102 ←ド・モアブルの定理。 ←=xn+iy 0sr²<1 よって に0<r<1のとき 1-400 0<r<1より, lim|rl"=0であるから ゆえに 0≦|x|=||"|cos nolsrp. よって 0≦ly|=|||sinner| また 以上から、求める必要十分条件は +③iのとき 10 lim|x|=lim|y|= 0 71-00 ゆえに 1110 Z ここで1-2 lim xnn-000 ZR= ここで k=1 z(1-2)= 1-² よって 1- 1+√3 i 10 1+√3 i 10 k=1 84 3+5√3 i 42 (1+√3i)(9+√3 i) (9-√3i)(9+√3 i) 6+10√3i_3+5√3i 2x= k=1 1-2 (1-(xn+iyn)) 1+√3 i 9-√3i 11-0 0721 0<r<1 n=1] -(1-Xn-iyn) 2R= = 1/2 (3(1-xn) +5√3 yn+(5√/3 (1–xn)—3yn}i) z*= (xn+iyn)= xx+iZyn k=1 3(1-x₂)+5√√3 yn 42 ΣXn² n=1 42 5√3 (1-xn)-3yn 42 0</1/3 <1であるから, (1) の結果より limxn=limyn = 0 „=lim 11-00 2 k=1 2 = = = = ( 1²/2 + √²³_i) = = = (cos / 1 + isin) Σyn=lim- 11-0 ←Sa<1のとき a²19 a=1のとき、 α>1のとき、18 42 ←xel Saxolxel から、 xel 0のとき 初項z. 公比zの等比 数列の初項から第 環 までの和 12-00 3 (1-x)+5√3ym_3_71 42 5√3 (1-xn)-3yn_15√/3 42 -419 ←分母の実数化。 42 14 ← 22 のもう1つの表現。 ←実部、虚部をそれぞれ 比較。 (12) 結果を利用 総合 N=1 £ =lim ży

回答募集中 回答数: 0
数学 高校生

問題3枚目、図・表1.2枚目です。問題の2.3.4.が分からないです。わかる所だけでも解説よろしくお願いします。

20 TV 34 2019 年度 総合問題 次の文章を読んで、後の問1~問5に答えなさい。 図1は、経済協力開発機構(OECD) 印度でいるのが国の相対的武術の タである。 相対的貧困率とは、各国の所得分布における中央値の50%に満たない 人々の総人口に占める割合である。 20% 18% 16% 14% 12% 10% 8% 6% 4% 2% 0% チェコ フィンランド フランス アイスランド デンマーク 5 オランダ ノルウェー スロバキア オーストリア スウェーデン スイス ベルギー スロベニア アイルランド イギリス ドイツ ハンガリー ルクセンブルク ニュージーランド ポーランド 5-5 OECD平均 福山市立大・柳瀬 韓国 カナダ イタリア ポルトガル オーストラリア ギリシア スペイン 図1 相対的貧困率の国際比較」 スエチ エ 日本 チリ リトアニア 「ラトビア ストニア トルコ イスラエル アメリカ 福山市立大 表 世帯総 平均世帯 相対的 平坦 中 15.7 注1) 各国のデータは,2012年~2016年のデータの中で最新のデータをもとにし ている。 出典:経済協力開発機構 (2018), Income distribution, OECD Social and Welfare Statistics (database), https://doi.org/10.1787/data-00654-en をもとに作成 ETUT ROB09229 表1は,日本における世帯数と世帯人員,各世帯の所得などの年次推移を示してい る。表2は,各国の絶対的な貧困率を示すデータである。絶対的な貧困率とは、経済 的な理由のために,食料が買えない,医療を受けられない、衣服が買えないなどの状 態に,過去1年間に陥ったことがある割合を示している。 torn at T som med sin blunded vonom an

回答募集中 回答数: 0