学年

教科

質問の種類

数学 高校生

aとxを入れ替えずにやるとf(x)の値が異なってしまいます(2枚目の写真です)。 なぜ入れ替えて計算しないといけないんですか?そのままやったら間違ってる理由も教えて欲しいです。

380 基本例題 242 定積分と微分法 次の等式を満たす関数 f(x) および定数a の値を求めよ。 00000 (1)f(t)dt=x²-3x-4 71(2) (2) f(t)dt=x³-3x p.374 基本事項 d dx |指針 a が定数のとき、Sf(t)dt はxの関数である。その導関数について,F(8)= とするとSoftata[F(t)]-1(F(x)-F(a))=F(x)=f(x) d dx 定数 F (a) は xで微分すると0 であるから,off(t)dt=f(x)が成り立つ。 Ja d また,等式でx=a とおくと, Sof(t) dt=0 であるから,左辺は0になる。これより αの方程式が得られる。 (2)まず,与えられた等式を。f(t)dt=-x+3x と変形して,両辺をxで微分。 CHART 定積分の扱い SS を含むならxで微分 (1)S*f(t)dt=x-3x-4……… ① とする。 解答 ①の両辺をxで微分すると cSf(t)dt=2x-3 あ すなわち f(x)=2x-3 Sof(t)dt=f(x) また, ① で x=α とおくと, 左辺は0になるから 0=α²-3a-4 Sof(t)dt=0 よって (a+1)(a-4)=0 a=-1,4 したがって f(x)=2x-3;a=-1, 4th()( (2) Sef(t) dt=x-3xから (1)しさん? X ◄S¢ƒ(t)dt=−S*ƒf(t)dit Ss(t)dt=-x+3x ② 上端と下端を交換しない d=jbで ②の両辺をxで微分するとSof(t)dt=3x2+3 すなわち f(x)=-3x2+3 また,②で x=αとおくと, 左辺は0になるから 0=-α+3a ゆえに a(a²-3)=0 よってa=0, ±√3 したがって f(x)=-3x2+3;a=0, ±√3 dca dx Saf (t)dt=-f(x) としてもよい。

解決済み 回答数: 1
数学 高校生

この問題でグラフを書くとなっているのですが 3次関数のグラフって書けますか?だいたいって感じですか? 微分してもうまくいかなくて💦 簡単なグラフだったらすみません、、

0000 広めよ。 めよ。 (2)東京電機大 245 246 重要 257 係系に注意 YA 2 151 BA 基本 251 3次曲線と接線の間の面積 「もの面積Sを求めよ。 393 00000 曲線y=x-5x2+2x+6とその曲線上の点(3, -6) における接線で囲まれた図 | 指針 面積を求める方針は 1 グラフをかく ・基本 248 250 重要 252 2 積分区間の決定 ③上下関係に注意 また、積分の計算においては,次のことを利用するとよい。 本間では,まず接線の方程式を求め, 3次曲線と接線の共有点のx座標を求める。 3次曲線y=f(x)(x3の係数がα) と直線y=g(x) がx=αで接するとき、等式 f(x)-g(x)=a(x-a)(x-β) が成り立つ。 y=3x²-10x+2であるから, 接線 の方程式は 解答 ERUT SU (-6)=(3・32-10・3+2)(x-3) 曲線 y=f(x) 上の点 (α, f(a)) における接線 の方程式は y-f(a) f'(a)(x-a) 0 すなわち y=-x-3 3 0 x 2 線の概形について _342 参照。 ここで 値を求める必要は この接線と曲線の共有点のx座標 は,x-5x2+2x+6=-x-3の解 である。 -6 これからx-5x2+3x+9=0(*) ゆえに (x-3)(x+1)=0 よって x=3,2-10 y=x-4xにつ =x(x+2)(x-2) 由との交点のx座 x=0, ±2 線 y=3x2 は原点 する, 下に凸の放 したがって図から,求める面積は S={(x-5x2+2x+6)-(-x-3)}dx =S(x-3)(x+1)dx 左辺が (x-3) を因数に もつことに注意して因数 分解。 1-5 3 93 3-6 -9 1 -2 -3 23 1 33 03 1 1 0 ( 7 7章 回新 =S,(x-3)"{(x-3)+4}dx=S{(x-3)"'+4(x-3)")dx(xa)(x-3) x- 4 13 313 -3) 3- +4 3 -1 -64+- == 256 64 3 = =(x-2)^{(x-2)-(B-α)} 3 f(x-a) dx= (x-a)*+1 n+1 +C m 積

解決済み 回答数: 1