学年

教科

質問の種類

数学 高校生

(2)θとおく、という考えの導き方を教えて欲しいです。 あと、θと置いた時、どうして(2)の解説の3行目のことが言えるか教えて欲しいです。

4/ 無限等比級数の図形への応用 (2)POQ=0 とおくと, (1) より 8 83 zy 平面上に, 2直線 y=xとl:y=2x とがある。 直線上の点P (1,1) を通りに垂 直な直線との交点をQ とし,点Q を通り に垂直な直線との交点をP とする. 以下同様に,上の点P を通りに垂直な 直線との交点をQnとし, Q を通りに垂 Y 12:y=2x ao sin= OP。 √10 √10 (0<<) Ly=x [PQncos0QnP+1 XpPo (1,1) ... 直な直線ととの交点をP+1として,直線上の点Po, Pi, Pz, ・・・お よび直線上の点Qo, Q1, Q2, を定め, PrQn=an (n=0, 1, ...) と おく.このとき,次の問いに答えよ. 10° (1) α を求めよ. なかも (2) an+1 を an で表せ. 次に,∠PQP+1=∠QnPn+1Q+1=0より QP+1 cos 0=Pn+1Qn+1 QnP+1 を消去して Pn+1Qn+1=cos20PQn an+1= cos20.an cos20=1-sin²0=1- an+1= an lim PQ すなわち lim n→∞k=0 だから, YA Q Q Pa Pa+1 1 9 0 = より 10 10 akは、 n→∞k=0 ( (3) lim PkQk * * D L . n→∞k=0 初項 店,公比 あるので 10 -1<- <<1 だから,収束して 10 9 の無限等比級数を表し (46ポイント) 精講 「以下同様に」という文言がポイントです. この文言があるときは、 漸化式をつくることになりますが、 1つだけコツがあります. それ は,初項を求めるための図とは別に, 漸化式をつくるための図をか くことです. 問題文の図を利用して(1)も(2)も解こうとすると,図がゴチャゴチ ャしてわかりにくくなります. 1 1 その和は, =2√5 √5 9 1 10 ポイント 点列ができる図形の問題では、 初項を求めるための図 と漸化式をつくるための図の2つをかく また,(3), limΣの形からもわかる通り、無限級数の和がテーマです. (46 解答 (1) Po(1,1) と直線 2x-y=0 の距離:y=2xc がα だから, 演習問題 47 h:y=x ao Po 1----- |2-1| 1 ao= 5 ことができ √22+(-1)2 (IIB ベク34点と直線の距離) To x 10 点P (n=0, 1, 2, …)をx座標が1/7(a>0)である放物線 y=x2上の点とする. 2点PとP+1 を結ぶ線分と放物線によっ て囲まれる部分の面積を An とするとき, 次の問いに答えよ. (1) A をαで表せ. (2) Anna で表せ. (3) Anaで表せ. n=0

解決済み 回答数: 1
数学 高校生

赤線のところの計算を教えて欲しいです

280 重要 例 172 正四面体と球 000 1辺の長さがαである正四面体 ABCD がある。 (1) 正四面体 ABCD に外接する球の半径Rをαを用いて表せ。 (2) (1)の半径Rの球と正四面体 ABCDの体積比を求めよ。 (3) 正四面体 ABCD に内接する球の半径r をα を用いて表せ。 (4)(3)の半径の球と正四面体 ABCD の体積比を求めよ。 指針 (1) 頂点Aから底面 ABCD に垂線 AH を下ろす。 外接する球の中心を0とすると, OA=OB=OC=OD (=R) である。 また,直線AH 上の点Pに対して, PB=PC=PD であるから, Oは直線AH上にある。 よって、直角三角形OBH に着目して考える。 πR³ (2)半径Rの球の体積は 1/2 (3) 内接する球の中心をI とすると, Iから正四面体 の各面に下ろした垂線の長さは等しい。 正四面体を Iを頂点とする4つの合同な四面体に分けると (正四面体 ABCD の体積)=4×(四面体IBCD の体積 ) これから, 半径r を求める (例題 167 (3) で三角形の内接円の半径を求めるとき 三角形を3つに分け, 面積を利用したのと同様) (1) 頂点Aから底面 ABCD に垂線 AH を下ろし、外接 する球の中心を0とすると, 0 は線分AH 上にあり B (3) 内接する球の中心を IACD, IABD, IBCD = V=4X (四面体 IBC =4: √3 3 √2 ばから √√6 1= 12 V= 12 ゆえに (4) 半径の球の体積 V2= よって V2 : V ―は基本 昌樹 検討 空間図形の問題は 基本例題 170 と重 空間図形の計量の 求めたい部分 ことが, 解法の 重要例題 172 の 考える問題では ことが多い。 球の中心は 平面は辺 CD a は右の図のよ であり,AB 共有点をもた 着目する平面 をかいて考え おぼえる 解答 OA=OB=R √6 ゆえに OH=AH-OA= a-R AH= √6 3 3a, △OBH は直角三角形であるから, 三平方の定理により BH2+OH = OB2 BH=- a よって 3 (*)*+ (a-R)²=R² 2 170 (1) の結果を用い 整理して - 2√6a a -aR=0 3 3 ゆえに R= 2/6 a=√6 a 4 B (2) 正四面体 ABCD の体積を Vとすると ・V= -a³ √2 √2 <V= -αは基本帳 12 また、半径Rの球の体積を V, とすると V₁==πR³= √6 √6 = 3 8 170 (2) の結果を用い よって V1:V= √6 a √2 NO3 : 12 a³=9π: 2√3 練習 半径1の ③ 172 ただし, 角形の (1)正 (2)球

未解決 回答数: 1
数学 高校生

2番助けて計算が意味わかんないです

81 中線定理 △ABCにおいて,辺BCの中点をMとし AB=c, BC=2a, CA=b とおくとき (1) cos B を d, b,表せ . (2) AM2 を abcで表せ. (3) AB°+AC2=2(AM2+BM2) が成りたつことを示せ. =AB 13 b=CA 公式を使って計算する問題」 が多いの すが、高校の数学では図形の問題はもちろんのこと、数や式に関する 題でも「証明する問題」 が多くなります。 大学入試では証明問題がか り増えますので、 今のうちからいやがらずに訓練を積んでいきましょ 証明問題の考え方の基本は ① まず、条件と結論を整理して ② # ③ 条件に含まれていて,結論に含まれていないものが「消える」よ B a M a C 条件に含まれていなくて、結論に含まれているものが「でてくる」よ 4 方針を立てて 2a ⑤ 道具 (公式) を選ぶこと 精講 (2) 三角形の内部に線が1本ひいてあると, 1つの角を2度使うこ とができます. この問題でいえば, ∠B を △ABCの内角と考え て(1)を求め,次に △ABM の内角と考えてAM を求めることが それにあたります。 (3) この等式を中線定理 (パップスの定理) といいます. この等式は,まず使 えるようになることが第1です。使えるようになったら自力で証明すること を考えることも大切です.また,証明方法はこれ以外に,三平方の定理を使 う方法 (2)や数学IIで学ぶ座標を使った方法, 数学Cで学ぶベクトル を使う方法などがあります。 が成りたつ (三平方の定理を使う方法 ) ポイント △ABCにおいて, 辺BC の中点を M とすると AB'+AC2=2(AM2 BM2) (中線定理) 参 A から辺BCに下ろした垂線の足Hが線分 MC 上にあ 明しておきます。 (証明) 図中の線分 AM を中線といいますが,この線分AM を 2: 1 に内分する 点Gを△ABCの重心といい(52),これから学ぶ数学ⅡI の 「図形と方程 式」, 数学Cの 「ベクトル」 「複素数平面」 でも再び登場します. AH=h, BM=α とする. 右図のようにAから辺BC に下ろした垂線の足Hが線分 MC上にあるとき, COSA=Btz-s 260 解答 また、 (1)△ABCに余弦定理を適用して cos B=- 4a2+c2b2_4a2+c2-62 2.2a.c 4ac AB²=BH2+h²=(a+MH)²+h² AB2=2+2aMH + MH2+h2 AC2=(α-MH)+h2 AC2=α2-24MH + MH2+h2 ①+② より, B ......2 (2)△ABM に余弦定理を適用して AM2=c2+α2-2cacosB=c'+q_4a2+c2-62_b'+c-2a° 2 (3)a=BM,6=AC,c=AB だから, 2AM = AC2+AB2-2BM2 よって AB2- AB2+AC2=2a2+2MH2+2h2 =2BM2+2(MH+h2) =2(BM2+AM2) 2 演習問題 81 AB=5,BC=6,CA=4 をみたす △ABCに ☆求めよ.

解決済み 回答数: 1
数学 高校生

∠AHBが60°になる理由を教えてください!

・例題 基本 173 空間図形の測量 ①①① 水平な地面の地点Hに, 地面に垂直にポールが立っている。 2つの地点 A, Bか らポールの先端を見ると, 仰角はそれぞれ30° と 60°であった。 また, 地面上の 測量ではA, B間の距離が20m, 地点Hから2地点 A, B を見込む角度は60° であった。このとき,ポールの高さを求めよ。 ただし, 目の高さは考えないもの とする。 指針 基本 135 例題135の測量の問題と異なり,与えられた値を三角形の辺や角としてとらえると 空間図形が現れる。よって, に従って考える。 283 B ム 章 P 空間図形の問題 平面図形を取り出す の ここでは,ポールの高さをxmとして, AH, BH を x で表し, △ABH に 余弦定理を利用する。 P なお、右の図のように,点Pから線分ABの両端に向かう2つの 半直線の作る角を,点P から線分ABを見込む角という。 A ポールの先端をPとし, ポール P 解答 の高さをPH=x (m) とする。 単位:m △PAH で PH:AH=1:√3 AH=√3x (m) ゆえに 2 1x Ex 30% √3 A LH √3x √3x △PBH で PH:BH=√3:1 30° H P A 1 60° 1 よって BH= -x (m) 20 x 20 √3 3 B 19 1 三角形の面積 △ABH において, 余弦定理により 2 20°=(√3x)+(- -x-2.√3x.. x COS 1rcos 60° 3 √3 2 3 x 60°- B H 1 x √3 内角が 30° 60° 90°の直 角三角形の3辺の長さの比 1200 したがって x2= 7 x>0であるから 1200 x= = V 7 20/21 7 は 12:3 1200 2013 √7 √7 よって, 求めるポールの高さは 20/21 m 高さは約13m 7

解決済み 回答数: 1