数学
高校生

赤線のところの計算を教えて欲しいです

280 重要 例 172 正四面体と球 000 1辺の長さがαである正四面体 ABCD がある。 (1) 正四面体 ABCD に外接する球の半径Rをαを用いて表せ。 (2) (1)の半径Rの球と正四面体 ABCDの体積比を求めよ。 (3) 正四面体 ABCD に内接する球の半径r をα を用いて表せ。 (4)(3)の半径の球と正四面体 ABCD の体積比を求めよ。 指針 (1) 頂点Aから底面 ABCD に垂線 AH を下ろす。 外接する球の中心を0とすると, OA=OB=OC=OD (=R) である。 また,直線AH 上の点Pに対して, PB=PC=PD であるから, Oは直線AH上にある。 よって、直角三角形OBH に着目して考える。 πR³ (2)半径Rの球の体積は 1/2 (3) 内接する球の中心をI とすると, Iから正四面体 の各面に下ろした垂線の長さは等しい。 正四面体を Iを頂点とする4つの合同な四面体に分けると (正四面体 ABCD の体積)=4×(四面体IBCD の体積 ) これから, 半径r を求める (例題 167 (3) で三角形の内接円の半径を求めるとき 三角形を3つに分け, 面積を利用したのと同様) (1) 頂点Aから底面 ABCD に垂線 AH を下ろし、外接 する球の中心を0とすると, 0 は線分AH 上にあり B (3) 内接する球の中心を IACD, IABD, IBCD = V=4X (四面体 IBC =4: √3 3 √2 ばから √√6 1= 12 V= 12 ゆえに (4) 半径の球の体積 V2= よって V2 : V ―は基本 昌樹 検討 空間図形の問題は 基本例題 170 と重 空間図形の計量の 求めたい部分 ことが, 解法の 重要例題 172 の 考える問題では ことが多い。 球の中心は 平面は辺 CD a は右の図のよ であり,AB 共有点をもた 着目する平面 をかいて考え おぼえる 解答 OA=OB=R √6 ゆえに OH=AH-OA= a-R AH= √6 3 3a, △OBH は直角三角形であるから, 三平方の定理により BH2+OH = OB2 BH=- a よって 3 (*)*+ (a-R)²=R² 2 170 (1) の結果を用い 整理して - 2√6a a -aR=0 3 3 ゆえに R= 2/6 a=√6 a 4 B (2) 正四面体 ABCD の体積を Vとすると ・V= -a³ √2 √2 <V= -αは基本帳 12 また、半径Rの球の体積を V, とすると V₁==πR³= √6 √6 = 3 8 170 (2) の結果を用い よって V1:V= √6 a √2 NO3 : 12 a³=9π: 2√3 練習 半径1の ③ 172 ただし, 角形の (1)正 (2)球

回答

疑問は解決しましたか?