学年

教科

質問の種類

数学 高校生

この解説の前半がよくわからないのでもっと詳しくわかりやすい解説を求めてます! 特にf(x+1)-f(x)   =a(x+1)ⁿ+b(x+1)ⁿ⁻¹+・・・-(axⁿ+bxⁿ⁻¹+・・・)  から   =anxⁿ⁻¹+g(x) となるところがよくわからないです

重要 例題 21 等式を満たす多項式の決定 00000 多項式f(x)はすべての実数xについてf(x+1)-f(x)=2x を満たし,f(0) = 1 であるという。このとき, f(x) を求めよ。 〔一橋大〕 基本15 指針 例えば,f(x)が2次式とわかっていれば,f(x)=ax2+bx+c とおいて進めることが できるが,この問題ではf(x)が何次式か不明である。 →f(x)はn次式であるとして,f(x)=ax+bx-1+......(a≠0,n≧1) とおいて 進める。f(x+1)-f(x) の最高次の項はどうなるかを調べ, 右辺2.x と比較するこ とで次数nと係数αを求める。 なお,f(x) = (定数) の場合は別に考えておく。 5 基本 解答 f(x)=1|この場合は,(*)に含ま れないため、別に考えて f(x) = c(cは定数) とすると, f (0)=1から いる。 これはf(x+1)-f(x)=2x を満たさないから,不適。 よって, f(x)=ax+bx-1+(a0n≧1)(*) とす ると f(x+1)-f(x) =a(x+1)"+6(x+1)"'+.....-(ax+bx"-1+…………) =anxn-1+g(x) ただし, g(x)は多項式で,次数はn-1より小さい。 f(x+1)-f(x)=2xはxについての恒等式であるから,最 高次の項を比較して (x+1)" =x+nCixn-1+nCzx-2+... のうち, a(x+1)"-ax” の最高次 の項は anx-1 で,残り の項はn-2次以下とな る。 n-1=1 ... ①, an=2 ①から n=2 ゆえに、②から a=1 c=1 このとき, f(x)=x2+bx+c と表される。 f(0)=1から anx-1と2xの次数と 係数を比較。 またf(x+1)-f(x)=(x+1)2+6(x+1)+c-(x2+bx+c) c=1としてもよいが, =2x+6+1 結果は同じ よって 2x+b+1=2x この等式はxについての恒等式であるから b+1=0 係数比較法。 すなわち b=-1 したがって f(x)=x-x+1 POINT 次数が不明の多項式は,次と仮定して進めるのも有効

解決済み 回答数: 2
数学 高校生

至急お願いします!! 数2の式と証明の、最初の方の基礎問題です。 また、~からの問題で、rを使わなくてもできるやり方ってありますか? rが入ると複雑になって頭がごっちゃになっちゃって... 誰か教えてください🙏

基本 例題 2 二項展開式とその係数 (α-2b) の展開式で,bの項の係数は 00000 の項の係数は であ る。また,(x-2)の展開式で、xの項の係数は定数項は-□であ る。 [京都産大〕 基本1 指針 展開式の全体を書き出す必要はない。求めたい項だけを取り出して考える。 (a+b)" の展開式の一般項は Cra" "b" まず, 一般項を書き、指数部分に注目しての値を求める。 解答 (ウ),(エ)一般項は Cr(x2)-(-2)=Cx12-2. (-2)" XP =C,(-2),x12-2 ここで, 指数法則 α ÷ α"=an を利用すると x-12-2r x" =x12-2x12-3r x" したがって, 指数 12-3ヶ に関し, 問題の条件に合わせた方程式を作り,それを解く。 (a-2b) の展開式の一般項は Crα-(-26)"=Cr(-2)'a-rb" bの項はr=1のときで, その係数は 6C1(-2)=-12 2b の項はr=4のときで, その係数は 6C.(−2)*= 240 C1=6 C=C2=15, (-2)=16 また,(x-2) の展開式の一般項は Cr(x)(-2)-C(-2). *- x" 12-2r =Cr(-2)'.x12-2r-r =Cr(-2)' ・x12-3r ① xの項は, 12-3r=6よりr=2のときである。 その係数は,①から 6C2(-2)²="60 定数項は, 12-3ヶ=0よりr=4のときである。 したがって、 ①から «C(−2)*="240 (*) <(*)の形のままで考えると (ウ)の項は x-12-2 x" ゆえに x12-2x.x よって 12-2r=6+y これを解いて r=2 (エ) 定数項は xx 12-2 = x とすると 12-2r=r これを解いて=4

解決済み 回答数: 1
数学 高校生

⑵の証明問題で、二項定理を使って証明をすることはできませんか? あと、なぜ10で割った時のあまりで考えるだけでは、他の数字の割った余りが0になる可能性もあるのではないですか?

6 2021年度 文系 [1] iを虚数単位とする。 以下の間に答えよ。 Level B 201 (1)=2.3.4.5のとき(3+1)*を求めよ。 またそれらの虚部の整数を10で割っ た余りを求めよ。 (2)を正の整数とするとき (3+i)" は虚数であることを示せ。 (1) ポイント (1) (+)=(3+i) (3+i) を用いて順に計算する。 (2) (1)から実部, 虚部をそれぞれ10で割った余りが推測できるので,数学的帰納法を 用いて,そのことを証明する。 解法 (3+i) =9+6i+i=8+6i (答) (3+1)=(3+i)(3+i) = (8+6i) (3+i) = 24 +26i + 6i = 18+ 26 ...... (答) (3+i) = (3+i) (3+i) = (18+26i) (3+i) =54+96i +26i = 28 +96z (答) (3+1)=(3+i) (3+i) = (28+96z) (3+i) =84+316i+96i=-12+316i ...... (答) 1 §2 整数 数列 式と証明 85 = {10 (3a-b+1) +8}+{10 (a +3 + 2) + 6}i よって、(3)の実部 虚部はいずれも整数であり,実部 虚部を10で割った 余りはそれぞれ8,6であるので, n=k+1のときも①は成り立つ。 [I][II]より2以上の整数nについて① が成り立つ。 したがって、nが2以上の整数のとき,(3)”の虚部は0ではないので,(3+j)"は 虚数である。 数である。 M また、n=1のとき,3+iは虚数であるので,nを正の整数とするとき,(3+i)"は虚 〔注〕 (2) (1)の結果から,n≧2のとき虚部を10で割った余りはつねに6と予想されるが, (証明終) 数学的帰納法を用いて証明するので,実部を10で割った余りが8であることもあわせ て証明する。なお,n=5のとき,実部は-12=10×(-2)+8であるので, 10で割った 余りは8である。 n=1のときは別であるので注意すること。 平 またこれらの虚部の整数を10で割った余りは,いずれも 13とする 6 (答) (2) 2以上の整数nについて (3+i) の実部虚部はいずれも整数であり、実部 虚部を10で割った余りはそ れぞれ8,6である」 ・・・・・・① ( (dp)=in が成り立つことを数学的帰納法で証明する。 [I] n=2のとき (d)-8 (3+ 1) =8+6iの実部は 8. 虚部は6であるので、①は成り立つ。 4 [II] n=k (k=2,3,4, ...) のとき, ①が成り立つと仮定する。 このとき,a,b を整数として(3+i)=(10a+8) + (106) iとすると(ds) (3+i)+1=(3+i)*(3+i) ={(10a+8) + (10b+6)}(3+i) = (30a +24) + (10a +30b+26) i+ (10b+6) i² = (30a-10b+18) + (10a +30b+26) i

解決済み 回答数: 1
数学 高校生

高1数Ⅱです 大至急お願いします🙇 (1)の回答にマーカー部がいらないのはなぜですか?? (2)はあるのですが… 違いを教えてもらいたいです🫡

20 基本 例題 6 展開式の係数(2) (多項定理の利用) 00000 次の式の展開式における,[ ]内に指定されたものを求めよ。 (1)(x+y+z) [xy2z2 の項の係数] (2) (a+6-2c) [abic の項の係数] HART & SOLUTION (a+b+c)" の展開式の項の係数 n! 一般項 blg!r!ab°c, p+gtr=nを利用 p.13 基本事項 5 (a+b+c)"={(a+b)+c}” として考えることもできるが,その場合,二項定理を2回適用 する必要がある。←別解 を参照。 n! ので,スムーズ。 一般項 abc" を利用する場合,a,b,c, b,g,r,nにそれぞれ代入するだけな 解答 (1)xy2z2 の項の係数は 5! 1!2!2! 5.4.3 2・1 -=30 一般項は 別解{(x+y+z} の展開式において, 22 を含む項は 5C2(x+y322 5! p!q!!xyz p+g+r=5 また, (x+y) の展開式において, xy2 の項の係数は 3C2 よって, xy2z' の項の係数は xyの項は Czxye 5C2 ×3C2=10×3=30 (2) (a+b-2c) abcの項は 一般項は 7! 7! 7! -α2b3-2c)2= (-2)²a²b³c² 2!3!2! 2!3!2! p!q!r!ab(-2c) p+gtr=7 よって, abc2 の項の係数は 7! 7.6.5.4 -x(-2)²=- -×4=840 2!3!2! 2・1×2・1 別解 {(a+b)-2c} の展開式において, c2 を含む項は 7C2(a+b)5(-2c)²=7C2(-2)²(a+b)5c² また (a+b) の展開式において, α263 の項の係数は5C3の頃は よって, abc2の項の係数は 5C3a2b3 7Cz(-2)2×5C3=21×4×10=840 PRACTICE 6 次の式の展開式における, [ ]内に指定されたものを求めよ。 (1)(x+2y+3z) [xz の項の係数 ] (2) (2x-12y+z) [xyzの項の係数

解決済み 回答数: 1