学年

教科

質問の種類

数学 高校生

92. 答えは合っているのですが、(文字を具体的な数字に書き換えて解き方を考えたので)うまく記述文は書けませんでした。仮にこれが記述問題だとしたら何割くらいの得点になりますか??

R 1 減少 重要 例題 92 既約分数の和 00000 pは素数m,nは正の整数でm<nとする。mとnの間にあって, pを分母と する既約分数の総和を求めよ。 $1=1 61=-5 7+58r 指針▷既約分数の和→全体の和から整数の和を除くという方針で求める。 まず,具体的な値で考えてみよう。 例えば,2と5の間にあって3を分母とする分数は 11 8 9 10 7 3'3' 3'3' (*) 解答 であり、既約分数の和は(*)の和から3と4を引くことで求められる。 このことを一般化すればよい。 gを自然数として, m<g p ① のうち、 - pn-pm-1 2 9 12 13 3, 3 pm<g<pnであるから g=pm+1,pm+2, よって 9_pm+1 pm+2 Þ þ P これらの和をS とすると これらの和を S2 とすると S2= が整数となるもの _=m+1,m+2, -< n を満たす 14 3' 3 n-m-1 2 -(m+n) S= (+ 24288 Les ass (n-1)-(m+1)+1 2 159), arc -(m+n) p S=(pn-1)-(pm+1)+1(om+1.pn-1)S=1/2"(a+1) SODUL P ...... pn-1 n-1 を求める ………, pn-1 -{(m+1)+(n-1)} 【同志社大] 1/2 (m+n){(n−m)p−(n−m)} 1/12(m+n)(n-m)(b-1) ゆえに 求める総和をSとすると, S=S-S2 であるから pn-pm-¹ (m+n)_n_m−¹(m+n) 2 2 (*)は等差数列であり、3と4は 2と5の間にある整数である。 「とんの間」であるから, 両端のとnは含まない。 < 初項 基本 89,90 pm+1 か 公差 1 等差数列。 GROER) 45.= n(a+1) mとnの間にある整数。 (全体の和) (整数の和) 523 3章 12 等差数列 委 Ja に

回答募集中 回答数: 0
数学 高校生

1枚目の11番のところのtheyと21番のthisはそれぞれ何を示しているのか教えてください。 2枚目の17番のweを示しているのは誰ですか。 3枚目の6番のsheはだれを示しているのか。 至急お願いします

Date 1. English as a ( 19 2 ) to one ( English )( 3 native English speakers ( 4 only a ( 5 English is now used more often/ 6 between ( )-(. most native speakers /tadé// )( .)/ ) of the world's English speakers. // ) speakers / 11 they 12 The English( 13 is called English as a lingua franca / 14 or ELF.// LESSON 4 than between ( 8 For example,/ 9 when business people from Japan, China, and Korea / 10 have a meeting,/ ) speakers. // 15 In using ELF,/ 16 you should speak clearly and simply.// 17 You should also ( ) on ( 18 For example, / ), / ) their business in English. // Xin this ( 20|( 21 This is not a problem/ 22 because we can understand both.// )(ELF) 23 However, / 24 if you say /dadér/ or /tatér/, / 25 no one will understand what you say.// 26 This example shows us/ ) some usually say /tadáw/// →このような例とは? 27 that consonants are more important than ( today as DL Part 3 どのような状況? ). // ) 11 ネ法 Japanese 国際共通語としての英語(ELF) ある概算によると 英語母語話者[ネイティブスピーカー] は 占めるにすぎません 世界の英語話者のたった4分の1を 今では、よく英語が使われています 非母語話者[非ネイティブスピーカー] 間 のほうが 母語話者 [ネイティブスピーカー] 間よりも たとえば 日本,中国, 韓国の実業家が 会議をするとき 彼らは英語で彼らのビジネスについて話 し合います このような状況で話される英語は 国際共通語としての英語と呼ばれます またはELFと ELFを使うときは はっきりと, 簡潔に話すべきです また、子音にも注意を集中させるべきで す たとえば たいていの母語話者[ネイティブスピーカー] は todayを/tadér/ と発音します 一方で、 普段は/tadá / と言う人もいま す これは問題ではありません 私たちは両方とも理解できるので しかしながら もし/dadér/か/tatér/ と言えば あなたの言うことはだれもわからないで しょう この例は、私たちに示しています 重要であることを

未解決 回答数: 1
数学 高校生

4. これでも大丈夫ですよね??

基本例題 4 多項展開式とその係数 (2) 5 (x+1/123+1) の展開式における定数項を求めよ。 指針 多項定理から,一般項は 5! 解答 展開式の一般項は 5! か!g!r! TO HRU p!g!r!x².()²·¹² (p+q+r=5, p≥0, q≥0, r≥0) -XP. 練習 ただし p+g+r=5 定数項は, よって, ② から Ⓡ4 t (464 (イ) この式を指数法則 -=x-", (xc")"=xmn, xm.xn=xm+n (p.14 参照)を使って 1 x" Ax” の形に整理する。そして、定数項x=1⇔B=0であることから, B=1 わち xの指数部分が0) を満たす0以上の整数 (p, g, r) の組を求める。 X p2g=0から これを①に代入して ゆえに r≧0であるから gは0以上の整数であるから g=0のときr=5 したがって、 定数項は •1"= ...... 2q=0のときである。 p=2g 5! 0!0!5! + ・1" 5! ・・1 p!q!r!* -xp. x29 5! か!g!z! X-29 ①, ≧0,g≧0, r≧0 g=0, 1 q=1のとき r=2 (p, q, r)=(0, 0, 5), (2, 1, 2) \5 3g+r=5 r=5-3q 5-3g0 5! 2!1!2! (2) 注意 (*)のままで考えてもよい。 XP 定数項は, -=1 とすると,x=x29から 以後は、上の解答と同じになる。 x²9 ISTOR =1+30=31 (*) E0 5 p=2q ST= 次の展開式における, [ ]内に指定された項の係数を求めよ。 (1) (x²-x³-3)⁰ [x²] (2) (a+b+¹+¹) [ab²] 0!=1 0000 =x-29 5-390から r = 5-3g から。 straci Kal x29 この条件を活かす。 [大阪 (1) knC 2) (1+ 基本 t▷ (1) (2) JAR 5 In-1Сk-1= したがって 二項定 答 ア) 等式 よって イ) 等式( (1– knCk= よって (ウ) 等式 習 5 (1- 1 よって pを素 この式 次の (1) (2) ナ

回答募集中 回答数: 0
数学 高校生

219. 解答下から2行目の 4a^2(a^2+2)>0であるから不等式から 4a^2(a^2+2)>0を消せるのはなぜですか??

2x-6x+9 223 グラフ, 2個, 1個 かる。 程式では 考える。 の実数 f'(x)=3x2-3a²=3(x+a)(x-a) = f(x) の個数に 別に 1個 き 81. Do 基本例題219 3次方程式の実数解の個数 (2) 3次方程式x3-3a²x+4a=0が異なる3個の実数解をもつとき, 定数αの値の範 囲を求めよ。 指針 方程式f(x)=0の実数解⇔ 解答 y=f(x)のグラフとx軸の共有点のx座標に注目。 3次方程式f(x)=0 が異なる3個の実数解をもつ ⇔ y=f(x)のグラフがx軸と共有点を3個もつ (極大値)>0かつ (極小値) < 0 (極大値)×(極小値) < 0 f(x)=x-3a²x+4a とする。 3次方程式f(x)=0 が異なる3個の実数解をもつから,3次関 数f(x) は極値をもち, 極大値と極小値が異符号になる。 ここで, f(x) が極値をもつことから, 2次方程式f'(x)=0 は 異なる2つの実数解をもつ。 f'(x)=0 とすると x=±a よって このとき, f(x) の増減表は次のようになる。 a>0 の場合 a<0 の場合 a x -a 0 f'(x) + 0 f(x) 極大 \ 極小 + If(-u)f(a)<0から すなわち 40² (q²+2)>0であるから したがって 3次関数では (極大値)> ( 極小値) £-x)( a<-√2, √2<a 〔昭和薬大〕 a (2a³+4a) (-2a³+4a) <0 4a²(a²+2)(a²-2) >0 a²-2>0 0 x -a f'(x) + 0 + f(x) 極大 \ 極小 > a≠0 ... 基本218 極大 演習 224 y=f(x) 0 極小 (極大値)>0, ( 極小値) < 0 QUIEM < α = 0 を満たす。 α=0のとき, f(x)=x3 と なり極値をもたない。 αの正負に関係なく, x=a, -αの一方で極大, 他方で極小となる。 (極大値)× ( 極小値) =f(-a)f(a) (a+√2)(a-√2)>0 a 【検討 3次方程式の実数解の個数と極値 - 3次方程式f(x)=0 の異なる実数解の個数と極値の関係をまとめると,次のようになる。 ② 実数解が2個 ③ 実数解が3個 ① 実数解が1個 極値の一方が 0 極値が同符号 x 極値が異符号 または 極値なし B a B B x who fere ſo we ſee h A f(a)ƒ(B)=0 f(a)f(B)>0 f(x)f(B) <0 0が異なる3個の実数解をもつとき,定数aの値 p.344 EX142 337 38 35 最大値・最小値、方程式・不等式 6章 37

未解決 回答数: 1
数学 高校生

198.2 記述に問題はないですか??

00000 よ。 接点 (2,-2) する。 える ='(a)(x-a) xの接点は は接線の下 >0 では接 ある。 この 曲線を2つに かし、 基本例題198 法線の方程式 2 -x³. 5xについて 3本 曲線 y= 9 ASES PO (1) 曲線上の点(2, -1/24) における法線の方程式 HEDON (2) (1)で求めた法線と曲線の共有点のうち、点 次のものを求めよ。 の線の方程式を求 指針 (1) 曲線y=f(x) 上の点A(a, f(a)) における法線の方程式は Ablicy 1 y—ƒ(a)=¯¯ƒ'(a)(x—a) (2)(1) で求めた法線の方程式と曲線の方程式を連立させて, xの3次方程式を解く。 解答 5 (1) f(x)=2012-2123xとするとf(x)=1/3x-33 5 6-2p+ よって、点 (2, -1/24 ) における接線の傾きは ② から 42 これをif'(2)= ・・22. ne by f(2)=3.2²-3-1 5 -14) 以外の点の座標 9 p.308 基本事項 ② 8318+x5¹²x=x すなわちy=-x+- 4 9 MAUROOM ASOR (2) 求める共有点のx座標は、次の方程式のx=2 以外の実数 解である。 5 4 a = -1 (²²x²-²3²x = -x + 1² ピー 整理して x3-3x-2=0 よって (x-2)(x+1)=0x したがって,求める点のx座標は, x=-1であり,求める共 13\-d) 有点の座標は (-1,13) 練習 ③ 198 (1) 曲線上の点 (1, 1) における法線の方程式 曲線y=x3-3x²+2x+1について,次のものを求めよ。 00000 - 24 ABST ゆえに,法線の傾きは-1である。 法線の傾きをとすると したがって、求める法線の方程式は D=6} =³&t$$_m׃′(2)=−1 よって y−(−14)=-1·(x-2) »)S—t—gl_inl-(6 *??_m=_ƒ(2) YA O lfd y=f(x) A 法線 法線 接線(21) 接線 (2) (1)で求めた法線と曲線の共有点のうち, 点 (1, 1) 以外の点の座標 x D7564 x=2が1つの解となるから, 左辺は x-2 を因数にもつ。 x=-1は重解であるから, この法線は曲線の接線でも ある。 p.314 EX129 311 6章 35 接 線 で n) Exc 36

回答募集中 回答数: 0